Artificial Neural Networks to solve dynamic programming problems: a bias-corrected Monte Carlo estimator ${ }^{1}$

Julien Pascal
Central Bank of Luxembourg

July 5, 2023

[^0]
Table of Contents

(1) Introduction
(2) Theory
(3) A large scale model
(4) Conclusion

Context: The Unreasonable Effectiveness of Machine Learning
Figure: The success of AlphaGo

This Paper

Global approach that uses Artificial Neural Networks to solve Economic Models

Artificial Neural Network

Artificial Neural Network

$$
\mathbf{x} \rightarrow \mathcal{N}_{\rho}(\mathbf{x})=\sigma_{K}\left(\mathbf{W}_{K} \ldots \sigma_{2}\left(\mathbf{W}_{2} \sigma_{1}\left(\mathbf{W}_{1} \mathbf{x}+\mathbf{b}_{1}\right)+\mathbf{b}_{2}\right) \ldots+\mathbf{b}_{K}\right)
$$

Why this paper?

- High Dimensional Models in Economics
- Why Global Methods?
- Why ANNs?

Why this paper?

- High Dimensional Models in Economics
- HA models: Aiyagari (1994), Krusell and Smith (1998)
- HANK models: Kaplan et al. (2018)
- firm dynamics (Khan and Thomas, 2008), multi-country models (Backus et al., 1992), OLG models (Marchiori and Pierrard, 2015)
- Why Global Methods?
- Why ANNs?

Why this paper?

- High Dimensional Models in Economics
- HA models: Aiyagari (1994), Krusell and Smith (1998)
- HANK models: Kaplan et al. (2018)
- firm dynamics (Khan and Thomas, 2008), multi-country models (Backus et al., 1992), OLG models (Marchiori and Pierrard, 2015)
- Why Global Methods?
- non-differentiable models
- linearization may eliminate interesting amplification mechanisms (certainty equivalence)
- a non-stochastic steady-state may not exist in the first place
- Why ANNs?

Why this paper?

- High Dimensional Models in Economics
- HA models: Aiyagari (1994), Krusell and Smith (1998)
- HANK models: Kaplan et al. (2018)
- firm dynamics (Khan and Thomas, 2008), multi-country models (Backus et al., 1992), OLG models (Marchiori and Pierrard, 2015)
- Why Global Methods?
- non-differentiable models
- linearization may eliminate interesting amplification mechanisms (certainty equivalence)
- a non-stochastic steady-state may not exist in the first place
- Why ANNs?
- theory: universal function approximation theorems (Hornik et al., 1989), resilient to the curse of dimensionality (Barron, 1993)
- practice: backpropagation algorithm (Rumelhart et al., 1986), GPUs

Literature Review

(1) Global methods:

- Smolyak's sparse grid Krueger and Kubler (2004) and Judd et al. (2014)
- Adpative sparse grid Brumm and Scheidegger (2017)
- Gaussian processes Scheidegger and Bilionis (2019)
(2) ANN + Economic Models:
- ANN + traditional methods: Fernández-Villaverde et al. (2019)
- 100% ANN: Azinovic et al. (2022), Maliar et al. (2021)

Literature Review

(1) Global methods:

- Smolyak's sparse grid Krueger and Kubler (2004) and Judd et al. (2014)
- Adpative sparse grid Brumm and Scheidegger (2017)
- Gaussian processes Scheidegger and Bilionis (2019)
(2) ANN + Economic Models:
- ANN + traditional methods: Fernández-Villaverde et al. (2019)
- 100% ANN: Azinovic et al. (2022), Maliar et al. (2021)

Literature Review

(1) Global methods:

- Smolyak's sparse grid Krueger and Kubler (2004) and Judd et al. (2014)
- Adpative sparse grid Brumm and Scheidegger (2017)
- Gaussian processes Scheidegger and Bilionis (2019)
(2) ANN + Economic Models:
- ANN + traditional methods: Fernández-Villaverde et al. (2019)
- 100% ANN: Azinovic et al. (2022), Maliar et al. (2021)

Contributions

(1) Contribution 1: generalize the all-in-one expectation operator of Maliar et al. (2021) with the bc-MC operator.
(2) Contribution 2: derive theoretical properties for the bc-MC operator
(3) Contribution 3: numerical illustrations and discussion on time-accuracy trade-offs

Contributions

(1) Contribution 1: generalize the all-in-one expectation operator of Maliar et al. (2021) with the bc-MC operator. all-in-one
(2) Contribution 2: derive theoretical properties for the bc-MC operator
(3) Contribution 3: numerical illustrations and discussion on time-accuracy trade-offs

Contributions

(1) Contribution 1: generalize the all-in-one expectation operator of Maliar et al. (2021) with the bc-MC operator. all-in-one
(2) Contribution 2: derive theoretical properties for the bc-MC operator
(3) Contribution 3: numerical illustrations and discussion on time-accuracy trade-offs

Contributions

(1) Contribution 1: generalize the all-in-one expectation operator of Maliar et al. (2021) with the bc-MC operator. all-in-one
(2) Contribution 2: derive theoretical properties for the bc-MC operator
(3) Contribution 3: numerical illustrations and discussion on time-accuracy trade-offs

Table of Contents

(1) Introduction

(2) Theory
(3) A large scale model
4) Conclusion

General Structure of Economic Models

- Functional stochastic equation:

$$
\begin{equation*}
\mathbb{E}_{\varepsilon}(f(s, \epsilon))=0 \text { for } \forall s \in S \tag{1}
\end{equation*}
$$

Examples: Euler or Bellman equations.

- Solution is a parametric decision function $\underbrace{\mathcal{A} \mathcal{N} \mathcal{N}(s \mid \theta)}=s^{\prime}$, which minimizes the loss:

$$
\mathcal{L}(\theta)=\mathbb{E}_{s}\left[\mathbb{E}_{\varepsilon}(f(s, \epsilon \mid \theta))^{2}\right]
$$

General Structure of Economic Models

- Functional stochastic equation:

$$
\begin{equation*}
\mathbb{E}_{\varepsilon}(f(s, \epsilon))=0 \text { for } \forall s \in S \tag{1}
\end{equation*}
$$

Examples: Euler or Bellman equations.

- Solution is a parametric decision function $\underbrace{\mathcal{A N} \mathcal{N}(s \mid \theta)}_{\text {neural network }}=s^{\prime}$, which minimizes the loss:

$$
\begin{equation*}
\mathcal{L}(\theta)=\mathbb{E}_{s}\left[\mathbb{E}_{\varepsilon}(f(s, \epsilon \mid \theta))^{2}\right] \tag{2}
\end{equation*}
$$

The biased Monte Carlo Estimation

To approximate $\mathcal{L}(\theta)$, replace population means by sample averages (Monte Carlo integration):

$$
\begin{equation*}
\mathcal{L}_{M, N}^{B}(\theta)=\frac{1}{M} \sum_{m=1}^{M}\left[\frac{1}{N} \sum_{n=1}^{N} f\left(s_{m}, \epsilon_{n} \mid \theta\right)\right]^{2} \tag{3}
\end{equation*}
$$

Bias $\left(\operatorname{Var}[g(x)]=\mathbb{E}\left[g(x)^{2}\right]-\mathbb{E}[g(x)]^{2} \Leftrightarrow \mathbb{E}\left[g(x)^{2}\right]=\mathbb{E}[g(x)]^{2}+\operatorname{Var}[g(x)]\right)$

The biased Monte Carlo Estimation

To approximate $\mathcal{L}(\theta)$, replace population means by sample averages (Monte Carlo integration):

$$
\begin{equation*}
\mathcal{L}_{M, N}^{B}(\theta)=\frac{1}{M} \sum_{m=1}^{M}\left[\frac{1}{N} \sum_{n=1}^{N} f\left(s_{m}, \epsilon_{n} \mid \theta\right)\right]^{2} \tag{3}
\end{equation*}
$$

Bias $\left(\operatorname{Var}[g(x)]=\mathbb{E}\left[g(x)^{2}\right]-\mathbb{E}[g(x)]^{2} \Leftrightarrow \mathbb{E}\left[g(x)^{2}\right]=\mathbb{E}[g(x)]^{2}+\operatorname{Var}[g(x)]\right):$

The biased Monte Carlo Estimation

To approximate $\mathcal{L}(\theta)$, replace population means by sample averages (Monte Carlo integration):

$$
\begin{equation*}
\mathcal{L}_{M, N}^{B}(\theta)=\frac{1}{M} \sum_{m=1}^{M}\left[\frac{1}{N} \sum_{n=1}^{N} f\left(s_{m}, \epsilon_{n} \mid \theta\right)\right]^{2} \tag{3}
\end{equation*}
$$

Bias $\left(\operatorname{Var}[g(x)]=\mathbb{E}\left[g(x)^{2}\right]-\mathbb{E}[g(x)]^{2} \Leftrightarrow \mathbb{E}\left[g(x)^{2}\right]=\mathbb{E}[g(x)]^{2}+\operatorname{Var}[g(x)]\right):$

$$
\begin{align*}
& \mathbb{E}_{\epsilon}\left[\left(\frac{1}{N} \sum_{n=1}^{N} f\left(s_{m}, \epsilon_{n} \mid \theta\right)\right)^{2}\right]=\left(\mathbb{E}_{\epsilon}\left[\frac{1}{N} \sum_{n=1}^{N} f\left(s_{m}, \epsilon_{n} \mid \theta\right)\right]\right)^{2}+\operatorname{Var}_{\epsilon}\left(\frac{1}{N} \sum_{n=1}^{N} f\left(s_{m}, \epsilon_{n} \mid \theta\right)\right) \\
& \mathbb{E}_{\epsilon}\left[\left(\frac{1}{N} \sum_{n=1}^{N} f\left(s_{m}, \epsilon_{n} \mid \theta\right)\right)^{2}\right]=\underbrace{\mu_{s_{m}}^{2}}_{\text {true value }}+\underbrace{\frac{\sigma_{f, s_{m}}^{2}}{N}}_{\text {bias }} \tag{4}
\end{align*}
$$

The biased-corrected Monte Carlo estimator

The minimum variance unbiased estimator (MVUE) of μ^{2} is $\hat{\mu}^{2}-\frac{S_{n}^{2}}{N}$ (Das (1975)):

$$
\begin{equation*}
\mathcal{L}_{M, N}^{U}(\theta)=\frac{1}{M} \sum_{m=1}^{M}\{\left[\frac{1}{N} \sum_{n=1}^{N} f\left(s_{m}, \epsilon_{n} \mid \theta\right)\right]^{2}-\underbrace{\frac{S_{m, n}^{2}}{N}}_{\substack{\text { remove the bias }}}\} \tag{5}
\end{equation*}
$$

Proposition

(1) The biased-corrected Monte Carlo estimator (5) can be expressed as:

$$
\begin{equation*}
\mathcal{L}_{M, N}^{U}(\theta)=\frac{2}{M N(N-1)} \sum_{m=1}^{M} \sum_{1 \leq i<j}^{N} f\left(s_{m}, \epsilon_{m}^{i} \mid \theta\right) f\left(s_{m}, \epsilon_{m}^{j} \mid \theta\right) \tag{6}
\end{equation*}
$$

where ϵ^{i} and ϵ^{j} are i.i.d shocks with the same distribution as ϵ (N series of i.i.d shocks).
(2) In the special case with $N=2$:

This is the all-in-one operator of Maliar et al. (2021)

Proposition

(1) The biased-corrected Monte Carlo estimator (5) can be expressed as:

$$
\begin{equation*}
\mathcal{L}_{M, N}^{U}(\theta)=\frac{2}{M N(N-1)} \sum_{m=1}^{M} \sum_{1 \leq i<j}^{N} f\left(s_{m}, \epsilon_{m}^{i} \mid \theta\right) f\left(s_{m}, \epsilon_{m}^{j} \mid \theta\right) \tag{6}
\end{equation*}
$$

where ϵ^{i} and ϵ^{j} are i.i.d shocks with the same distribution as $\epsilon(N$ series of i.i.d shocks).
(2) In the special case with $N=2$:

$$
\mathcal{L}_{M, 2}^{U}(\theta)=\frac{1}{M} \sum_{m=1}^{M} f\left(s_{m}, \epsilon_{m}^{1} \mid \theta\right) f\left(s_{m}, \epsilon_{m}^{2} \mid \theta\right)
$$

This is the all-in-one operator of Maliar et al. (2021) ata

Proposition

(1) The biased-corrected Monte Carlo estimator (5) can be expressed as:

$$
\begin{equation*}
\mathcal{L}_{M, N}^{U}(\theta)=\frac{2}{M N(N-1)} \sum_{m=1}^{M} \sum_{1 \leq i<j}^{N} f\left(s_{m}, \epsilon_{m}^{i} \mid \theta\right) f\left(s_{m}, \epsilon_{m}^{j} \mid \theta\right) \tag{6}
\end{equation*}
$$

where ϵ^{i} and ϵ^{j} are i.i.d shocks with the same distribution as ϵ (N series of i.i.d shocks).
(2) In the special case with $N=2$:

$$
\mathcal{L}_{M, 2}^{U}(\theta)=\frac{1}{M} \sum_{m=1}^{M} f\left(s_{m}, \epsilon_{m}^{1} \mid \theta\right) f\left(s_{m}, \epsilon_{m}^{2} \mid \theta\right)
$$

This is the all-in-one operator of Maliar et al. (2021) allin-one

Proposition (choice of hyperparameters M and N) Promend

(1) Let $e_{M, N}(f \mid \theta)$ denote the integration error:

$$
e_{M, N}(f \mid \theta) \equiv \mathbb{E}_{s}\left[\mathbb{E}_{\varepsilon}(f(s, \epsilon \mid \theta))^{2}\right]-\underbrace{\mathcal{L}_{M, N}^{U}(\theta)}_{\text {stochastic }}
$$

(2) The mean squared integration error is equal to:

- Procedure: grid for N (and $M)$, select N to minimize $\operatorname{Var}\left(\mathcal{L}_{M, N}^{U}(\theta)\right)$

Proposition (choice of hyperparameters M and N)

(1) Let $e_{M, N}(f \mid \theta)$ denote the integration error:

$$
e_{M, N}(f \mid \theta) \equiv \mathbb{E}_{s}\left[\mathbb{E}_{\varepsilon}(f(s, \epsilon \mid \theta))^{2}\right]-\underbrace{\mathcal{L}_{M, N}^{U}(\theta)}_{\text {stochastic }}
$$

(2) The mean squared integration error is equal to:

$$
\begin{equation*}
\mathbb{E}\left[e_{M, N}(f \mid \theta)^{2}\right]=\underbrace{\operatorname{Var}\left(\mathcal{L}_{M, N}^{U}(\theta)\right)}_{\text {calculable }} \tag{7}
\end{equation*}
$$

- Procedure: grid for N (and $M)$, select N to minimize $\operatorname{Var}\left(\mathcal{L}_{M, N}^{U}(\theta)\right)$

Proposition (choice of hyperparameters M and N) Bromentin

(1) Let $e_{M, N}(f \mid \theta)$ denote the integration error:

$$
e_{M, N}(f \mid \theta) \equiv \mathbb{E}_{s}\left[\mathbb{E}_{\varepsilon}(f(s, \epsilon \mid \theta))^{2}\right]-\underbrace{\mathcal{L}_{M, N}^{U}(\theta)}_{\text {stochastic }}
$$

(2) The mean squared integration error is equal to:

$$
\begin{equation*}
\mathbb{E}\left[e_{M, N}(f \mid \theta)^{2}\right]=\underbrace{\operatorname{Var}\left(\mathcal{L}_{M, N}^{U}(\theta)\right)}_{\text {calculable }} \tag{7}
\end{equation*}
$$

- Procedure: grid for $N($ and $M)$, select N to minimize $\operatorname{Var}\left(\mathcal{L}_{M, N}^{U}(\theta)\right)$

Training by stochastic gradient descent

$$
\begin{equation*}
\theta_{i+1}=\theta_{i}-\gamma \nabla_{\theta} \mathcal{L}_{M, N}^{U}\left(\theta_{i}\right) \tag{8}
\end{equation*}
$$

Figure: GD and SGD

Stochastic Gradient Descent

Source

The smaller the variance of the stochastic gradient, the faster the training (Katharopoulos and Fleuret (2018)).

Takeaways

The biased-corrected Monte Carlo estimator:

$$
\mathcal{L}_{M, N}^{U}(\theta)=\frac{2}{M N(N-1)} \sum_{m=1}^{M} \sum_{1 \leq i<j}^{N} f\left(s_{m}, \epsilon_{m}^{i} \mid \theta\right) f\left(s_{m}, \epsilon_{m}^{j} \mid \theta\right)
$$

- Model with a lot of uncertainty: set N high (use many different series of independent shocks) Ncogrowth model
- Model with a lot of non-linearities: set M high (use many draws in the state space) Model with a borrowing constraint
- See proposition 4 in the paper (Proposition 4

Table of Contents

(1) Introduction

(2) Theory
(3) A large scale model
4) Conclusion

Model with a borrowing constraint

$$
\begin{equation*}
\max _{\left\{c_{t}\right\}_{t=0}^{\infty}} \mathbb{E}\left[\sum_{t=0}^{\infty} \beta^{t} u\left(c_{t}\right) \exp \left(\delta_{t}\right)\right] \tag{9}
\end{equation*}
$$

- constraint: $0 \leq c_{t} \leq w_{t}$
- $w_{t+1}=\left(w_{t}-c_{t}\right) \bar{r} \exp \left(r_{t+1}\right)+\exp \left(y_{t+1}\right), y_{t}=\exp \left(\sum_{i=1}^{l} p_{i, t}\right)$
- $\beta \in(0,1), \bar{r} \in\left(0, \frac{1}{\beta}\right), u(c)=\frac{c^{1-\gamma}}{1-\gamma}$

AR(1) processes:

$p_{i, t+1}=\rho_{i, p} p_{i, t}+\sigma_{i, p} \varepsilon_{i, t+1}^{p}, \quad \forall i \in 1,2, \ldots, l$

$$
\begin{aligned}
r_{t+1} & =\rho_{T} r_{t}+\sigma_{\tau} \varepsilon_{t+1}^{r} \\
\delta_{t+1} & =\rho_{\delta} \delta_{t}+\sigma_{\delta} \varepsilon_{t+1}^{\delta}
\end{aligned}
$$

Model with a borrowing constraint

$$
\begin{equation*}
\max _{\left\{c_{t}\right\}_{t=0}^{\infty}} \mathbb{E}\left[\sum_{t=0}^{\infty} \beta^{t} u\left(c_{t}\right) \exp \left(\delta_{t}\right)\right] \tag{9}
\end{equation*}
$$

- constraint: $0 \leq c_{t} \leq w_{t}$
- $w_{t+1}=\left(w_{t}-c_{t}\right) \bar{r} \exp \left(r_{t+1}\right)+\exp \left(y_{t+1}\right), y_{t}=\exp \left(\sum_{i=1}^{l} p_{i, t}\right)$
- $\beta \in(0,1), \bar{r} \in\left(0, \frac{1}{\beta}\right), u(c)=\frac{c^{1-\gamma}}{1-\gamma}$

AR(1) processes:

$$
\begin{align*}
p_{i, t+1} & =\rho_{i, p} p_{i, t}+\sigma_{i, p} \varepsilon_{i, t+1}^{p}, \quad \forall i \in 1,2, \ldots, l \\
r_{t+1} & =\rho_{r} r_{t}+\sigma_{r} \varepsilon_{t+1}^{r} \tag{10}\\
\delta_{t+1} & =\rho_{\delta} \delta_{t}+\sigma_{\delta} \varepsilon_{t+1}^{\delta}
\end{align*}
$$

state $s=\left(w, r, \delta, p_{1}, \ldots, p_{l}\right)$ with $d_{s} \equiv 3+l$ elements, shock $\varepsilon=\left(\varepsilon^{r}, \varepsilon^{\delta}, \varepsilon_{1}^{p}, \ldots, \varepsilon_{l}^{p}\right)$
$d_{\varepsilon} \equiv 2+l$ elements.

Model with a borrowing constraint

$$
\begin{equation*}
\max _{\left\{c_{t}\right\}_{t=0}^{\infty}} \mathbb{E}\left[\sum_{t=0}^{\infty} \beta^{t} u\left(c_{t}\right) \exp \left(\delta_{t}\right)\right] \tag{9}
\end{equation*}
$$

- constraint: $0 \leq c_{t} \leq w_{t}$
- $w_{t+1}=\left(w_{t}-c_{t}\right) \bar{r} \exp \left(r_{t+1}\right)+\exp \left(y_{t+1}\right), y_{t}=\exp \left(\sum_{i=1}^{l} p_{i, t}\right)$
- $\beta \in(0,1), \bar{r} \in\left(0, \frac{1}{\beta}\right), u(c)=\frac{c^{1-\gamma}}{1-\gamma}$
$\mathrm{AR}(1)$ processes:

$$
\begin{align*}
p_{i, t+1} & =\rho_{i, p} p_{i, t}+\sigma_{i, p} \varepsilon_{i, t+1}^{p}, \quad \forall i \in 1,2, \ldots, l \\
r_{t+1} & =\rho_{r} r_{t}+\sigma_{r} \varepsilon_{t+1}^{r} \tag{10}\\
\delta_{t+1} & =\rho_{\delta} \delta_{t}+\sigma_{\delta} \varepsilon_{t+1}^{\delta}
\end{align*}
$$

state $s=\left(w, r, \delta, p_{1}, \ldots, p_{l}\right)$ with $d_{s} \equiv 3+l$ elements, shock $\varepsilon=\left(\varepsilon^{r}, \varepsilon^{\delta}, \varepsilon_{1}^{p}, \ldots, \varepsilon_{l}^{p}\right)$ $d_{\varepsilon} \equiv 2+l$ elements.

bc-MC and Time Iteration: time-accuracy trade-off

Figure: bc-MC vs TI: time and accuracy

bc-MC and Time Iteration: time-accuracy trade-off

Figure: bc-MC vs TI: time and accuracy large scale model

Table of Contents

(1) Introduction
(2) Theory
(3) A large scale model
(4) Conclusion

Conclusion

(1) Generalize the all-in-one expectation operator of Maliar et al. (2021) with the bc-MC operator.
(2) Derive theoretical properties for the bc-MC operator

3 Numerical illustrations and discussion on time-accuracy trade-offs

Conclusion

(1) Generalize the all-in-one expectation operator of Maliar et al. (2021) with the bc-MC operator.
(2) Derive theoretical properties for the bc-MC operator

3 Numerical illustrations and discussion on time-accuracy trade-offs

Conclusion

(1) Generalize the all-in-one expectation operator of Maliar et al. (2021) with the bc-MC operator.
(2) Derive theoretical properties for the bc-MC operator
(3) Numerical illustrations and discussion on time-accuracy trade-offs

Conclusion

(1) Generalize the all-in-one expectation operator of Maliar et al. (2021) with the bc-MC operator.
(2) Derive theoretical properties for the bc-MC operator
(3) Numerical illustrations and discussion on time-accuracy trade-offs

Thank You

References I

Aiyagari, S. R. (1994). Uninsured idiosyncratic risk and aggregate saving. The Quarterly Journal of Economics, 109(3):659-684.
Azinovic, M., Gaegauf, L., and Scheidegger, S. (2022). Deep equilibrium nets. International Economic Review.
Backus, D. K., Kehoe, P. J., and Kydland, F. E. (1992). International real business cycles. Journal of political Economy, 100(4):745-775.

Barron, A. R. (1993). Universal approximation bounds for superpositions of a sigmoidal function. IEEE Transactions on Information theory, 39(3):930-945.

Brumm, J. and Scheidegger, S. (2017). Using adaptive sparse grids to solve high-dimensional dynamic models. Econometrica, 85(5):1575-1612.

Das, B. (1975). Estimation of $\mu 2$ in normal population. Calcutta Statistical Association Bulletin, 24(1-4):135-140.
Fernández-Villaverde, J., Hurtado, S., and Nuno, G. (2019). Financial frictions and the wealth distribution. Technical report, National Bureau of Economic Research.

References II

Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer feedforward networks are universal approximators. Neural networks, 2(5):359-366.

Judd, K. L., Maliar, L., Maliar, S., and Valero, R. (2014). Smolyak method for solving dynamic economic models: Lagrange interpolation, anisotropic grid and adaptive domain. Journal of Economic Dynamics and Control, 44:92-123.

Kaplan, G., Moll, B., and Violante, G. L. (2018). Monetary policy according to hank. American Economic Review, 108(3):697-743.

Katharopoulos, A. and Fleuret, F. (2018). Not all samples are created equal: Deep learning with importance sampling. In International conference on machine learning, pages 2525-2534. PMLR.

Khan, A. and Thomas, J. K. (2008). Idiosyncratic shocks and the role of nonconvexities in plant and aggregate investment dynamics. Econometrica, 76(2):395-436.

Krueger, D. and Kubler, F. (2004). Computing equilibrium in olg models with stochastic production. Journal of Economic Dynamics and Control, 28(7):1411-1436.

References III

Krusell, P. and Smith, Jr, A. A. (1998). Income and wealth heterogeneity in the macroeconomy. Journal of political Economy, 106(5):867-896.

Maliar, L., Maliar, S., and Winant, P. (2021). Deep learning for solving dynamic economic models. Journal of Monetary Economics, 122:76-101.

Marchiori, L. and Pierrard, O. (2015). LOLA 3.0: Luxembourg OverLapping generation model for policy Analysis: Introduction of a financial sector in LOLA. Banque centrale du Luxembourg.
Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning representations by back-propagating errors. nature, 323(6088):533-536.

Scheidegger, S. and Bilionis, I. (2019). Machine learning for high-dimensional dynamic stochastic economies. Journal of Computational Science, 33:68-82.

All-in-one Maliar et al. (2021) Contrione Propition

Key idea (AIO):

$$
\left(E_{\varepsilon}[f(\varepsilon)]\right)^{2}=E_{\varepsilon_{1}}\left[f\left(\varepsilon_{1}\right)\right] E_{\varepsilon_{2}}\left[f\left(\varepsilon_{2}\right)\right]
$$

But also (bc-MC):

Key idea (AIO):

$$
\left(E_{\varepsilon}[f(\varepsilon)]\right)^{2}=E_{\varepsilon_{1}}\left[f\left(\varepsilon_{1}\right)\right] E_{\varepsilon_{2}}\left[f\left(\varepsilon_{2}\right)\right]
$$

But also (bc-MC):

$$
\left(E_{\varepsilon}[f(\varepsilon)]\right)^{2}=\frac{1}{3}\left(E_{\varepsilon_{1}}\left[f\left(\varepsilon_{1}\right)\right] E_{\varepsilon_{2}}\left[f\left(\varepsilon_{2}\right)\right]+E_{\varepsilon_{1}}\left[f\left(\varepsilon_{1}\right)\right] E_{\varepsilon_{3}}\left[f\left(\varepsilon_{3}\right)\right]+E_{\varepsilon_{2}}\left[f\left(\varepsilon_{2}\right)\right] E_{\varepsilon_{3}}\left[f\left(\varepsilon_{3}\right)\right]\right)
$$

Or

$$
\left(E_{\varepsilon}[f(\varepsilon)]\right)^{2}=\frac{1}{6}\left(E_{\varepsilon_{1}}\left[f\left(\varepsilon_{1}\right)\right] E_{\varepsilon_{2}}\left[f\left(\varepsilon_{2}\right)\right]+E_{\varepsilon_{1}}\left[f\left(\varepsilon_{1}\right)\right] E_{\varepsilon_{3}}\left[f\left(\varepsilon_{3}\right)\right]+E_{\varepsilon_{1}}\left[f\left(\varepsilon_{1}\right)\right] E_{\varepsilon_{4}}\left[f\left(\varepsilon_{4}\right)\right]+\ldots\right)
$$

etc.

J stochastic functional equations

Economic model:

$$
\begin{equation*}
\mathbb{E}_{\varepsilon}\left(f_{j}(s, \epsilon)\right)=0 \text { for } s \in S \text { and } j \in 1, \ldots, J \tag{11}
\end{equation*}
$$

Loss:

$$
\begin{equation*}
\mathcal{L}(\theta)=\sum_{j=1}^{J} \vartheta_{j} \mathbb{E}_{s}\left[\mathbb{E}_{\varepsilon}\left(f_{j}(s, \epsilon \mid \theta)\right)^{2}\right] \tag{12}
\end{equation*}
$$

The biased-corrected Monte Carlo estimator writes:

J stochastic functional equations

Economic model:

$$
\begin{equation*}
\mathbb{E}_{\varepsilon}\left(f_{j}(s, \epsilon)\right)=0 \text { for } s \in S \text { and } j \in 1, \ldots, J \tag{11}
\end{equation*}
$$

Loss:

$$
\begin{equation*}
\mathcal{L}(\theta)=\sum_{j=1}^{J} \vartheta_{j} \mathbb{E}_{s}\left[\mathbb{E}_{\varepsilon}\left(f_{j}(s, \epsilon \mid \theta)\right)^{2}\right] \tag{12}
\end{equation*}
$$

The biased-corrected Monte Carlo estimator writes:

$$
\begin{equation*}
\mathcal{L}_{M, N}^{U}(\theta)=\sum_{j=1}^{J} \vartheta_{j}\left(\frac{1}{M} \sum_{m=1}^{M}\left\{\left[\frac{1}{N} \sum_{n=1}^{N} f_{j}\left(s_{m}, \epsilon_{n} \mid \theta\right)\right]^{2}-\frac{S_{j, m, n}^{2}}{N}\right\}\right) \tag{13}
\end{equation*}
$$

Stochastic neogrowth model

$$
\begin{equation*}
\max _{\left\{c_{t}\right\}_{t=0}^{\infty}} \mathbb{E}\left[\sum_{t=0}^{\infty} \beta^{t} u\left(c_{t}\right)\right] \tag{14}
\end{equation*}
$$

- constraints $0 \leq c_{t} \leq y_{t}$
- $y_{t+1}=g\left(y_{t}-c_{t}\right) \eta_{t+1}, \eta_{t} \equiv \eta\left(\nu_{t}\right)=\exp \left(\mu+\sigma_{\nu} \nu_{t}\right), \nu \sim \mathcal{N}(0,1)$
- $u(c)=\log (c), g(k)=k^{\alpha}, \beta \in(0,1)$

Euler equation characterizing the model:

Equation (15) is an example of equation (1):

$$
f(s, \varepsilon)=u^{\prime}(c(s \mid \theta))-\beta u^{\prime}\left(c(g(s-c(s \mid \theta)) \eta(\varepsilon) \mid \theta) g^{\prime}(s-c(s \mid \theta)) \eta(\varepsilon)\right)
$$

Stochastic neogrowth model sincome takeave

$$
\begin{equation*}
\max _{\left\{c_{t}\right\}_{t=0}^{\infty}} \mathbb{E}\left[\sum_{t=0}^{\infty} \beta^{t} u\left(c_{t}\right)\right] \tag{14}
\end{equation*}
$$

- constraints $0 \leq c_{t} \leq y_{t}$
- $y_{t+1}=g\left(y_{t}-c_{t}\right) \eta_{t+1}, \eta_{t} \equiv \eta\left(\nu_{t}\right)=\exp \left(\mu+\sigma_{\nu} \nu_{t}\right), \nu \sim \mathcal{N}(0,1)$
- $u(c)=\log (c), g(k)=k^{\alpha}, \beta \in(0,1)$

Euler equation characterizing the model:

$$
\begin{equation*}
\mathbb{E}_{\nu}\left[u^{\prime}(c(y \mid \theta))-\beta u^{\prime}\left(c(g(y-c(y \mid \theta)) \eta(\nu) \mid \theta) g^{\prime}(y-c(y \mid \theta)) \eta(\nu)\right)\right]=0 \tag{15}
\end{equation*}
$$

Equation (15) is an example of equation (1):

$$
f(s, \varepsilon)=u^{\prime}(c(s \mid \theta))-\beta u^{\prime}\left(c(g(s-c(s \mid \theta)) \eta(\varepsilon) \mid \theta) g^{\prime}(s-c(s \mid \theta)) \eta(\varepsilon)\right)
$$

Stochastic neogrowth model sument

$$
\begin{equation*}
\max _{\left\{c_{t}\right\}_{t=0}^{\infty}} \mathbb{E}\left[\sum_{t=0}^{\infty} \beta^{t} u\left(c_{t}\right)\right] \tag{14}
\end{equation*}
$$

- constraints $0 \leq c_{t} \leq y_{t}$
- $y_{t+1}=g\left(y_{t}-c_{t}\right) \eta_{t+1}, \eta_{t} \equiv \eta\left(\nu_{t}\right)=\exp \left(\mu+\sigma_{\nu} \nu_{t}\right), \nu \sim \mathcal{N}(0,1)$
- $u(c)=\log (c), g(k)=k^{\alpha}, \beta \in(0,1)$

Euler equation characterizing the model:

$$
\begin{equation*}
\mathbb{E}_{\nu}\left[u^{\prime}(c(y \mid \theta))-\beta u^{\prime}\left(c(g(y-c(y \mid \theta)) \eta(\nu) \mid \theta) g^{\prime}(y-c(y \mid \theta)) \eta(\nu)\right)\right]=0 \tag{15}
\end{equation*}
$$

Equation (15) is an example of equation (1):

$$
f(s, \varepsilon)=u^{\prime}(c(s \mid \theta))-\beta u^{\prime}\left(c(g(s-c(s \mid \theta)) \eta(\varepsilon) \mid \theta) g^{\prime}(s-c(s \mid \theta)) \eta(\varepsilon)\right)
$$

Stochastic neogrowth model

Figure: Low-uncertainty parametrization ($\sigma_{\nu}=0.5$)

Stochastic neogrowth model

Figure: High-uncertainty parametrization ($\sigma_{\nu}=1.5$)

Optimal consumption with a borrowing constraint

$$
\begin{equation*}
\max _{\left\{c_{t}\right\}_{t=0}^{\infty}} \mathbb{E}\left[\sum_{t=0}^{\infty} \beta^{t} u\left(c_{t}\right) \exp \left(\delta_{t}\right)\right] \tag{16}
\end{equation*}
$$

- constraint: $0 \leq c_{t} \leq w_{t}+b$
- $w_{t+1}=\left(w_{t}-c_{t}\right) \bar{r} \exp \left(r_{t+1}\right)+\exp \left(y_{t+1}\right), y_{t}=\exp \left(p_{t}+q_{t}\right)$
- $\beta \in(0,1), \bar{r} \in\left(0, \frac{1}{\beta}\right), u(c)=\frac{c^{1-\gamma}}{1-\gamma}$

The four exogenous variables are assumed to following $\operatorname{AR}(1)$ processes:

Optimal consumption with a borrowing constraint

$$
\begin{equation*}
\max _{\left\{c_{t}\right\}_{t=0}^{\infty}} \mathbb{E}\left[\sum_{t=0}^{\infty} \beta^{t} u\left(c_{t}\right) \exp \left(\delta_{t}\right)\right] \tag{16}
\end{equation*}
$$

- constraint: $0 \leq c_{t} \leq w_{t}+b$
- $w_{t+1}=\left(w_{t}-c_{t}\right) \bar{r} \exp \left(r_{t+1}\right)+\exp \left(y_{t+1}\right), y_{t}=\exp \left(p_{t}+q_{t}\right)$
- $\beta \in(0,1), \bar{r} \in\left(0, \frac{1}{\beta}\right), u(c)=\frac{c^{1-\gamma}}{1-\gamma}$

The four exogenous variables are assumed to following $\operatorname{AR}(1)$ processes:

$$
\begin{align*}
p_{t+1} & =\rho_{p} p_{t}+\sigma_{p} \varepsilon_{t+1}^{p} \\
q_{t+1} & =\rho_{q} q_{t}+\sigma_{q} \varepsilon_{t+1}^{q} \\
r_{t+1} & =\rho_{r} r_{t}+\sigma_{r} \varepsilon_{t+1}^{r} \tag{17}\\
\delta_{t+1} & =\rho_{\delta} \delta_{t}+\sigma_{\delta} \varepsilon_{t+1}^{\delta}
\end{align*}
$$

Optimal consumption with a borrowing constraint
Figure: bc-MC estimator (left) and Time Iteration (right)

Optimal consumption with a borrowing constraint

Figure: Model with a borrowing constraint $(b=0)$ solved with the bc-MC estimator

Optimal consumption with a borrowing constraint

Figure: Model with a borrowing constraint $(b=1)$ solved with the bc-MC estimator

Proposition

Define $T \equiv \frac{M N}{2}, 2 T$ is the number of function calls $f($.$) within the loss function$
(1) $\operatorname{Var}\left(\mathcal{L}_{M . N}^{U}(\theta)\right)$ is proportional to $\frac{1}{T}$
(2) If $f\left(s_{m}, \varepsilon_{m} \mid \theta\right)=f\left(\varepsilon_{m} \mid \theta\right), \quad \forall s \in S(\approx$ high-variance model):
$\operatorname{Var}\left(\mathcal{L}_{M, N}^{U}(\theta)\right)=\frac{1}{T(N-1)} \operatorname{Var}\left(f\left(s_{m}, \varepsilon_{m}^{1} \mid \theta\right)\right)^{2}+\frac{2}{T} \mathbb{E}\left[f\left(s_{m}, \varepsilon_{m}^{1} \mid \theta\right)\right]^{2} \operatorname{Var}\left(f\left(s_{m}, \varepsilon_{m}^{1} \mid \theta\right)\right)$
(3) If $f\left(s_{m}, \varepsilon_{m} \mid \theta\right)=f\left(s_{m} \mid \theta\right), \quad \forall \varepsilon_{m} \in \mathcal{E}(\approx$ highly non-linear model $)$:

$$
\begin{equation*}
\operatorname{Var}\left(\mathcal{L}_{M, N}^{U}(\theta)\right)=\frac{1}{M}\left[\operatorname{Var}\left(f\left(s_{m}, \varepsilon_{m}^{1} \mid \theta\right)^{2}\right)\right] \tag{19}
\end{equation*}
$$

Proposition

Define $T \equiv \frac{M N}{2}, 2 T$ is the number of function calls $f($.$) within the loss function$
(1) $\operatorname{Var}\left(\mathcal{L}_{M, N}^{U}(\theta)\right)$ is proportional to $\frac{1}{T}$
(2) If $f\left(s_{m}, \varepsilon_{m} \mid \theta\right)=f\left(\varepsilon_{m} \mid \theta\right), \quad \forall s \in S(\approx$ high-variance model $)$:

(3) If $f\left(s_{m}, \varepsilon_{m} \mid \theta\right)=f\left(s_{m} \mid \theta\right), \quad \forall \varepsilon_{m} \in \mathcal{E}(\approx$ highly non-linear model $)$:

$$
\operatorname{Var}\left(\mathcal{L}_{M, N}^{U}(\theta)\right)=\frac{1}{M}\left[\operatorname{Var}\left(f\left(s_{m}, \varepsilon_{m}^{1} \mid \theta\right)^{2}\right)\right]
$$

Proposition

Define $T \equiv \frac{M N}{2}, 2 T$ is the number of function calls $f($.$) within the loss function$
(1) $\operatorname{Var}\left(\mathcal{L}_{M, N}^{U}(\theta)\right)$ is proportional to $\frac{1}{T}$
(2) If $f\left(s_{m}, \varepsilon_{m} \mid \theta\right)=f\left(\varepsilon_{m} \mid \theta\right), \quad \forall s \in S$ (\approx high-variance model):

$$
\begin{equation*}
\operatorname{Var}\left(\mathcal{L}_{M, N}^{U}(\theta)\right)=\frac{1}{T(N-1)} \operatorname{Var}\left(f\left(s_{m}, \varepsilon_{m}^{1} \mid \theta\right)\right)^{2}+\frac{2}{T} \mathbb{E}\left[f\left(s_{m}, \varepsilon_{m}^{1} \mid \theta\right)\right]^{2} \operatorname{Var}\left(f\left(s_{m}, \varepsilon_{m}^{1} \mid \theta\right)\right) \tag{18}
\end{equation*}
$$

(3) If $f\left(s_{m}, \varepsilon_{m} \mid \theta\right)=f\left(s_{m} \mid \theta\right), \quad \forall \varepsilon_{m} \in \mathcal{E}(\approx$ highly non-linear model $)$:

$$
\operatorname{Var}\left(\mathcal{L}_{M, N}^{U}(\theta)\right)=\frac{1}{M}\left[\operatorname{Var}\left(f\left(s_{m}, \varepsilon_{m}^{1} \mid \theta\right)^{2}\right)\right]
$$

Proposition

Define $T \equiv \frac{M N}{2}, 2 T$ is the number of function calls $f($.$) within the loss function$
(1) $\operatorname{Var}\left(\mathcal{L}_{M, N}^{U}(\theta)\right)$ is proportional to $\frac{1}{T}$
(2) If $f\left(s_{m}, \varepsilon_{m} \mid \theta\right)=f\left(\varepsilon_{m} \mid \theta\right), \quad \forall s \in S$ (\approx high-variance model):

$$
\begin{equation*}
\operatorname{Var}\left(\mathcal{L}_{M, N}^{U}(\theta)\right)=\frac{1}{T(N-1)} \operatorname{Var}\left(f\left(s_{m}, \varepsilon_{m}^{1} \mid \theta\right)\right)^{2}+\frac{2}{T} \mathbb{E}\left[f\left(s_{m}, \varepsilon_{m}^{1} \mid \theta\right)\right]^{2} \operatorname{Var}\left(f\left(s_{m}, \varepsilon_{m}^{1} \mid \theta\right)\right) \tag{18}
\end{equation*}
$$

(3) If $f\left(s_{m}, \varepsilon_{m} \mid \theta\right)=f\left(s_{m} \mid \theta\right), \quad \forall \varepsilon_{m} \in \mathcal{E}(\approx$ highly non-linear model $)$:

$$
\begin{equation*}
\operatorname{Var}\left(\mathcal{L}_{M, N}^{U}(\theta)\right)=\frac{1}{M}\left[\operatorname{Var}\left(f\left(s_{m}, \varepsilon_{m}^{1} \mid \theta\right)^{2}\right)\right] \tag{19}
\end{equation*}
$$

[^0]: ${ }^{1}$ This paper should not be reported as representing the views of the BCL or the Eurosystem. The views expressed are those of the authors and may not be shared by other research staff or policymakers in the BCL or the Eurosystem.

