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Context: The Unreasonable Effectiveness of Machine Learning
Figure: The success of AlphaGo

Source: AlphaGo (film)
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This Paper

Global approach that uses Artificial Neural Networks to solve Economic Models
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Why this paper?

• High Dimensional Models in Economics
• HA models: Aiyagari (1994), Krusell and Smith (1998)
• HANK models: Kaplan et al. (2018)
• firm dynamics (Khan and Thomas, 2008), multi-country models (Backus et al., 1992),

OLG models (Marchiori and Pierrard, 2015)

• Why Global Methods?
• non-differentiable models
• linearization may eliminate interesting amplification mechanisms (certainty equivalence)
• a non-stochastic steady-state may not exist in the first place

• Why ANNs?
• theory: universal function approximation theorems (Hornik et al., 1989), resilient to the

curse of dimensionality (Barron, 1993)
• practice: backpropagation algorithm (Rumelhart et al., 1986), GPUs
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Contributions

1 Contribution 1: generalize the all-in-one expectation operator of Maliar et al. (2021)
with the bc-MC operator. all-in-one

2 Contribution 2: derive theoretical properties for the bc-MC operator

3 Contribution 3: numerical illustrations and discussion on time-accuracy
trade-offs
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General Structure of Economic Models Example J equations

• Functional stochastic equation:

Eε

(
f(s, ϵ)

)
= 0 for ∀s ∈ S (1)

Examples: Euler or Bellman equations.

• Solution is a parametric decision function ANN (s|θ)︸ ︷︷ ︸
neural network

= s′, which minimizes

the loss:

L(θ) = Es

[
Eε

(
f(s, ϵ|θ)

)2]
(2)
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The biased Monte Carlo Estimation

To approximate L(θ), replace population means by sample averages (Monte Carlo
integration):

LB
M,N (θ) =

1

M

M∑
m=1

[ 1

N

N∑
n=1

f(sm, ϵn|θ)
]2

(3)

Bias (Var[g(x)] = E[g(x)2]− E[g(x)]2 ⇔ E[g(x)2] = E[g(x)]2 +Var[g(x)]) :

Eϵ[
( 1

N

N∑
n=1

f(sm, ϵn|θ)
)2

] =
(
Eϵ[

1

N

N∑
n=1

f(sm, ϵn|θ)]
)2

+Varϵ(
1

N

N∑
n=1

f(sm, ϵn|θ))

Eϵ[
( 1

N

N∑
n=1

f(sm, ϵn|θ)
)2

] = µ2
sm︸︷︷︸

true value

+
σ2
f,sm

N︸ ︷︷ ︸
bias

(4)
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The biased-corrected Monte Carlo estimator

The minimum variance unbiased estimator (MVUE) of µ2 is µ̂2 − S2
n

N ( Das (1975)):

LU
M,N (θ) =

1

M

M∑
m=1

{[ 1

N

N∑
n=1

f(sm, ϵn|θ)
]2

−
S2
m,n

N︸ ︷︷ ︸
remove the bias
with s. variance

}
(5)
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Proposition

1 The biased-corrected Monte Carlo estimator (5) can be expressed as:

LU
M,N (θ) =

2

MN(N − 1)

M∑
m=1

N∑
1≤i<j

f(sm, ϵim|θ)f(sm, ϵjm|θ) (6)

where ϵi and ϵj are i.i.d shocks with the same distribution as ϵ (N series of i.i.d
shocks).

2 In the special case with N = 2:

LU
M,2(θ) =

1

M

M∑
m=1

f(sm, ϵ1m|θ)f(sm, ϵ2m|θ)

This is the all-in-one operator of Maliar et al. (2021) all-in-one
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Proposition (choice of hyperparameters M and N) Proposition 4

1 Let eM,N (f |θ) denote the integration error:

eM,N (f |θ) ≡ Es

[
Eε

(
f(s, ϵ|θ)

)2]
− LU

M,N (θ)︸ ︷︷ ︸
stochastic

2 The mean squared integration error is equal to:

E
[
eM,N (f |θ)2

]
= Var(LU

M,N (θ))︸ ︷︷ ︸
calculable

(7)

• Procedure: grid for N (and M), select N to minimize Var(LU
M,N (θ))

13 / 25



Introduction Theory A large scale model Conclusion References

Proposition (choice of hyperparameters M and N) Proposition 4

1 Let eM,N (f |θ) denote the integration error:

eM,N (f |θ) ≡ Es

[
Eε

(
f(s, ϵ|θ)

)2]
− LU

M,N (θ)︸ ︷︷ ︸
stochastic

2 The mean squared integration error is equal to:

E
[
eM,N (f |θ)2

]
= Var(LU

M,N (θ))︸ ︷︷ ︸
calculable

(7)

• Procedure: grid for N (and M), select N to minimize Var(LU
M,N (θ))

13 / 25



Introduction Theory A large scale model Conclusion References

Proposition (choice of hyperparameters M and N) Proposition 4

1 Let eM,N (f |θ) denote the integration error:

eM,N (f |θ) ≡ Es

[
Eε

(
f(s, ϵ|θ)

)2]
− LU

M,N (θ)︸ ︷︷ ︸
stochastic

2 The mean squared integration error is equal to:

E
[
eM,N (f |θ)2

]
= Var(LU

M,N (θ))︸ ︷︷ ︸
calculable

(7)

• Procedure: grid for N (and M), select N to minimize Var(LU
M,N (θ))

13 / 25



Introduction Theory A large scale model Conclusion References

Training by stochastic gradient descent

θi+1 = θi − γ∇θLU
M,N (θi) (8)

Figure: GD and SGD

Source

The smaller the variance of the stochastic gradient, the faster the training (
Katharopoulos and Fleuret (2018)).
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Takeaways

The biased-corrected Monte Carlo estimator:

LU
M,N (θ) =

2

MN(N − 1)

M∑
m=1

N∑
1≤i<j

f(sm, ϵim|θ)f(sm, ϵjm|θ)

• Model with a lot of uncertainty: set N high (use many different series of
independent shocks) Neogrowth model

• Model with a lot of non-linearities: set M high (use many draws in the state space)
Model with a borrowing constraint

• See proposition 4 in the paper Proposition 4
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Model with a borrowing constraint Case l = 2

max
{ct}∞

t=0

E
[ ∞∑

t=0

βtu(ct) exp(δt)
]

(9)

• constraint: 0 ≤ ct ≤ wt

• wt+1 = (wt − ct)r̄ exp(rt+1) + exp(yt+1), yt = exp(
∑l

i=1 pi,t)

• β ∈ (0, 1), r̄ ∈ (0, 1
β ), u(c) =

c1−γ

1−γ

AR(1) processes:

pi,t+1 = ρi,ppi,t + σi,pε
p
i,t+1, ∀i ∈ 1, 2, ..., l

rt+1 = ρrrt + σrε
r
t+1

δt+1 = ρδδt + σδε
δ
t+1

(10)

state s =
(
w, r, δ, p1, ..., pl

)
with ds ≡ 3 + l elements, shock ε =

(
εr, εδ, εp1, ..., ε

p
l

)
dε ≡ 2 + l elements.

17 / 25



Introduction Theory A large scale model Conclusion References

Model with a borrowing constraint Case l = 2

max
{ct}∞

t=0

E
[ ∞∑

t=0

βtu(ct) exp(δt)
]

(9)

• constraint: 0 ≤ ct ≤ wt

• wt+1 = (wt − ct)r̄ exp(rt+1) + exp(yt+1), yt = exp(
∑l

i=1 pi,t)

• β ∈ (0, 1), r̄ ∈ (0, 1
β ), u(c) =

c1−γ

1−γ

AR(1) processes:

pi,t+1 = ρi,ppi,t + σi,pε
p
i,t+1, ∀i ∈ 1, 2, ..., l

rt+1 = ρrrt + σrε
r
t+1

δt+1 = ρδδt + σδε
δ
t+1

(10)

state s =
(
w, r, δ, p1, ..., pl

)
with ds ≡ 3 + l elements, shock ε =

(
εr, εδ, εp1, ..., ε

p
l

)
dε ≡ 2 + l elements.

17 / 25



Introduction Theory A large scale model Conclusion References

Model with a borrowing constraint Case l = 2

max
{ct}∞

t=0

E
[ ∞∑

t=0

βtu(ct) exp(δt)
]

(9)

• constraint: 0 ≤ ct ≤ wt

• wt+1 = (wt − ct)r̄ exp(rt+1) + exp(yt+1), yt = exp(
∑l

i=1 pi,t)

• β ∈ (0, 1), r̄ ∈ (0, 1
β ), u(c) =

c1−γ

1−γ

AR(1) processes:

pi,t+1 = ρi,ppi,t + σi,pε
p
i,t+1, ∀i ∈ 1, 2, ..., l

rt+1 = ρrrt + σrε
r
t+1

δt+1 = ρδδt + σδε
δ
t+1

(10)

state s =
(
w, r, δ, p1, ..., pl

)
with ds ≡ 3 + l elements, shock ε =

(
εr, εδ, εp1, ..., ε

p
l

)
dε ≡ 2 + l elements.

17 / 25



Introduction Theory A large scale model Conclusion References

bc-MC and Time Iteration: time-accuracy trade-off

Figure: bc-MC vs TI: time and accuracy
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bc-MC and Time Iteration: time-accuracy trade-off

Figure: bc-MC vs TI: time and accuracy large scale model
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Conclusion

1 Generalize the all-in-one expectation operator of Maliar et al. (2021) with the bc-MC
operator.

2 Derive theoretical properties for the bc-MC operator

3 Numerical illustrations and discussion on time-accuracy trade-offs
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Thank You
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All-in-one Maliar et al. (2021) Contributions Proposition 2

Key idea (AIO): (
Eε[f(ε)]

)2

= Eε1 [f(ε1)]Eε2 [f(ε2)]

But also (bc-MC):(
Eε[f(ε)]

)2

=
1

3

(
Eε1 [f(ε1)]Eε2 [f(ε2)] + Eε1 [f(ε1)]Eε3 [f(ε3)] + Eε2 [f(ε2)]Eε3 [f(ε3)]

)
Or(
Eε[f(ε)]

)2

=
1

6

(
Eε1 [f(ε1)]Eε2 [f(ε2)] + Eε1 [f(ε1)]Eε3 [f(ε3)] + Eε1 [f(ε1)]Eε4 [f(ε4)] + ...

)
etc.
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J stochastic functional equations Structure

Economic model:
Eε

(
fj(s, ϵ)

)
= 0 for s ∈ S and j ∈ 1, ..., J (11)

Loss:

L(θ) =
J∑

j=1

ϑj Es

[
Eε

(
fj(s, ϵ|θ)

)2]
(12)

The biased-corrected Monte Carlo estimator writes:

LU
M,N (θ) =

J∑
j=1

ϑj

( 1

M

M∑
m=1

{[ 1

N

N∑
n=1

fj(sm, ϵn|θ)
]2

−
S2
j,m,n

N

})
(13)
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Stochastic neogrowth model Structure Takeaways

max
{ct}∞

t=0

E
[ ∞∑

t=0

βtu(ct)
]

(14)

• constraints 0 ≤ ct ≤ yt
• yt+1 = g(yt − ct)ηt+1, ηt ≡ η(νt) = exp(µ+ σννt), ν ∼ N (0, 1)

• u(c) = log(c), g(k) = kα, β ∈ (0, 1)

Euler equation characterizing the model:

Eν

[
u′
(
c(y|θ)

)
− βu′

(
c
(
g
(
y − c(y|θ)

)
η(ν)

∣∣∣θ)g′(y − c(y|θ)
)
η(ν)

)]
= 0 (15)

Equation (15) is an example of equation (1):

f(s, ε) = u′
(
c(s|θ)

)
− βu′

(
c
(
g
(
s− c(s|θ)

)
η(ε)

∣∣∣θ)g′(s− c(s|θ)
)
η(ε)

)
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Stochastic neogrowth model

Figure: Low-uncertainty parametrization (σν = 0.5)
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Stochastic neogrowth model

Figure: High-uncertainty parametrization (σν = 1.5)
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Optimal consumption with a borrowing constraint Takeaways

max
{ct}∞

t=0

E
[ ∞∑

t=0

βtu(ct) exp(δt)
]

(16)

• constraint: 0 ≤ ct ≤ wt + b

• wt+1 = (wt − ct)r̄ exp(rt+1) + exp(yt+1), yt = exp(pt + qt)

• β ∈ (0, 1), r̄ ∈ (0, 1
β ), u(c) =

c1−γ

1−γ

The four exogenous variables are assumed to following AR(1) processes:

pt+1 = ρppt + σpε
p
t+1

qt+1 = ρqqt + σqε
q
t+1

rt+1 = ρrrt + σrε
r
t+1

δt+1 = ρδδt + σδε
δ
t+1

(17)
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Optimal consumption with a borrowing constraint Back Large scale model

Figure: bc-MC estimator (left) and Time Iteration (right)
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Optimal consumption with a borrowing constraint Back

Figure: Model with a borrowing constraint (b = 0) solved with the bc-MC estimator
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Optimal consumption with a borrowing constraint Back

Figure: Model with a borrowing constraint (b = 1) solved with the bc-MC estimator
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Proposition Back

Define T ≡ MN
2 , 2T is the number of function calls f(.) within the loss function

1 Var(LU
M,N (θ)) is proportional to 1

T

2 If f(sm, εm|θ) = f(εm|θ), ∀s ∈ S (≈ high-variance model):

Var(LU
M,N (θ)) =

1

T (N − 1)
Var

(
f(sm, ε1m|θ)

)2
+

2

T
E
[
f(sm, ε1m|θ)

]2
Var

(
f(sm, ε1m|θ)

)
(18)

3 If f(sm, εm|θ) = f(sm|θ), ∀εm ∈ E (≈ highly non-linear model):

Var(LU
M,N (θ)) =

1

M

[
Var

(
f(sm, ε1m|θ)2

)]
(19)
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