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Abstract

This paper analyzes the determinants of labor income shocks along the business

cycle. My main finding is that sorting between firms and workers is a key compo-

nent of idiosyncratic risk. Labor income shocks are analyzed through the lenses of

a dynamic search-and-matching model, which I estimate using US data. Because of

search frictions and mismatches between firms and workers, the laissez-faire equilib-

rium is not necessarily optimal. My results underline that the government can tame

business cycle fluctuations by designing a simple unemployment policy improving

sorting between firms and workers.
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1 Introduction

This paper has a triple objective. The first one is to deepen our understanding on the

sources of labor income shocks. That is, the unpredictable part of labor income changes.

It is now well established that fluctuations in earnings at the individual level is an order

of magnitude bigger than fluctuations at the macro level (Parker and Vissing-Jorgensen

(2009)). The assumption of normality of labor income shocks has been attacked by sev-

eral recent publications, in particular in Guvenen et al. (2014) and Guvenen et al. (2015).

Recessions are periods marked by intense negative labor income shocks, underlined by a

spike in left-skewness in the distribution of labor income changes. The aim of this paper

is to unpack the black-box of the complex labor income process and to analyze its deter-

minants. Why should we care? What does left-skeweness mean for an average worker?

In practical terms, it means that some categories of workers are badly hurt by recessions,

with persistent consequences. The scarring effects of recessions are now well identified

(see Ouyang (2009)). The persistence of labor income shocks can be in part explained by

search models with human capital depreciation, which creates a negative feedback loop

on aggregate variables, as in Walentin and Westermark (2018). If negative feedback loops

are involved, preventing bad shocks from happening or helping workers to recover from

them is probably a welfare enhancing policy.

This paper sheds light on a previously ignored component of idiosyncratic income

risk: sorting between workers and firms. By sorting, I mean the extent to which the

market allocates the right workers to the right jobs, where "right" is captured by com-

plementarities in the production function. Why is sorting an important mechanism for

the labor income process? When considering a labor market with search frictions and

random search, the pairing between firms and workers is not necessarily optimal. An

inefficient match in turn translates into lower wages as long as the match persists. Being

fired not only has a direct consequence on someone’s labor income, it also has dynamic

consequences. To go back to her/his previous income level, a newly unemployed worker

has to climb up the intra-firm wage ladder and the inter-firm ladder. That is, a worker has to

spend some time searching on the labor market before finding a firm that is the right

match, and conversely. Numerical simulations show that the inter-firm ladder is far

from being negligible. Long-tails in the distribution of labor income shocks hinges on
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the economy featuring heterogeneous firms, hence an inter-firm ladder. To the best of

my knowledge, empirical work on this component of risk is rather scarce. One notable

exception is Huckfeldt et al. (2016), who shows that earnings costs of job loss are concen-

trated among workers who find reemployment in lower-paying occupations. Using CPS

and PSID data, the author estimates that the initial earnings losses of workers losing their

job and subsequently switching occupations are four times larger than losses for workers

finding a job in their previous occupation. Persistence of the initial wage loss is only ob-

served for occupation switchers. These empirical facts can be consistently explained by

the existence of an inter-firm ladder combined with some degree of random search on

the labor market.

Related literature on sorting includes the seminal contribution of Abowd et al. (1999),

decomposing real total annual compensation per worker into an employee, an employer

and a residual effect. Bonhomme et al. (2019) introduce a framework that can accom-

modate interactions between worker and firm attributes. In a variance decomposition

exercise, Song et al. (2018) show that two-thirds of the rise in the dispersion of log earn-

ings between 1978 and 2013 can be attributed to a rise in the dispersion of average earn-

ings between firms. In the search-and-matching literature, Lise and Robin (2017) study

how sorting patterns are altered along the business cycle. To study labor income shocks

across the cycle, my strategy is to use and extend their model. My contribution is twofold.

Firstly, I extend the model of Lise and Robin (2017) by solving for the wages, which were

left implicit in their contribution. Secondly, I estimate the model using the simulated

method of moments (SMM) and wage moments. In particular, I focus on starting wage

moments, which are particularly well-defined within the model and have strong identi-

fication power.

A second objective of this paper explores new techniques to solve and estimate dy-

namic search-and-matching models with heterogeneity. Solving labor models with both

search frictions and heterogeneous agents is a notoriously difficult task. If workers do

not have access to full information on the state of the labor market, which includes the

number of vacancies posted by each firm and their associated wage, a commonly held

view is that such frameworks cannot be solved using standard numerical techniques.

To avoid these complications, the literature on dynamic search-and-matching models

has focused on block-recursive equilibrium, following the seminal contribution of Men-
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zio and Shi (2010). In short, a block-recursive model is one in which value functions and

market tightness are independent from the distribution of employment across worker

types. Such knife-edge conditions are met when search is directed. That is, (i) when firms

make public the wage associated to each vacancy they post (ii) workers have full in-

formation over wages and the types of vacancy posted. Armed with full knowledge

of the labor market conditions, workers direct their search efforts towards a specific

sub-market.1 While particularly clever and numerically efficient, block-recursive mod-

els are constrained efficient as a by-product of the modeling tricks involved (see Schaal

(2017)). Thus, in a block recursive model, the laissez-faire equilibrium is necessarily opti-

mal. When the goal of a paper is to explain a mechanism through the eyes of a model,

constrained efficiency is mostly harmless. However, if the objective is to understand how

a government may or may not improve the market outcome, it seems more appropriate

to come up with a new concept of equilibrium that does not rule out inefficiencies in the

first place. This is the route I explore in this paper. The strategy I use to solve a non

block-recursive search model can be seen as a variant of the Krusell and Smith (1998)

algorithm. Agents are endowed with a simple forecasting rule that needs to be estimated

via Monte-Carlo. The particularity in my setting is that the time series needed to estimate

the forecasting rule do not depend on the value functions to be calculated. This property,

specific to the model under scrutiny, leads me to design an algorithm that is both rapid

and robust to solve the model. Because the model is half way between a fully non-block

recursive model and a block recursive one, I propose to name it as semi-block recursive.

To a lesser extent, my work is related to the burgeoning literature on how to solve and

estimate models with both aggregate uncertainty and heterogeneity. Following the semi-

nal contribution of Krusell and Smith (1998), several techniques have been developed (see

Reiter (2009), Algan et al. (2014) and Winberry (2018)). While some of these techniques

are global and the other ones use linearization around the non-stochastic steady-state,

the common denominator of the above mentioned methods is that they rely on the recur-

sive representation of a multi-stage decision process. An interesting line of research has

recently used the sequence representation of the dynamic choice problem (see Le Grand

et al. (2017), Boppart et al. (2018) and Auclert et al. (2019)). In this paper, I stick to the

more commonly used recursive form, but I note that the sequence form is particularly

1A free entry condition for firms is also needed.
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well-suited in my setting. My contribution is not to develop a new method per se, but to

realize that there is a space in between models that are fully non-recursive and models

that are fully recursive. Within that thin space, exiting methods can easily be applied.

A third objective of this paper is to analyze the potential gains from designing an opti-

mal unemployment insurance (UI). Having defined a concept of equilibrium in which the

laissez-faire equilibrium is not optimal by design, I explore simple unemployment policies

that have the potential of being welfare-improving. The design of an optimal UI and the

extent to which it can stabilize the cycle has received a comprehensive treatment in the

macroeconomic literature. In a framework with heterogeneous agents and aggregate un-

certainty, Ragot and Le Grand (2019) solve for the optimal Ramsey problem. The optimal

replacement rate is pro-cyclical and stabilizes aggregate demand. In the present paper

welfare gains are realized by improving the improving the sorting between firms and

workers, boosting the value of production. In a similar setting, Lise et al. (2016) show

how an optimal replacement raste might improve the market equilibrium and transfer

utility across groups of workers. They find that the optimal unemployment scheme can

deliver a welfare improvement of 1.4%, concentrated on low-skill workers. I contribute

to this literature by analyzing a similar unemployment insurance scheme in a dynamic

setting. I find that the optimal unemployment insurance scheme generates a 0.25% in-

crease in welfare at the steady-state. While the gains are rather modest at the steady-

state, the policy is successful in stabilizing labor income shocks over the business cycle

by approximately 2%. These gains are achieved by transferring income from high-skilled

to low-skilled workers and by a stabilization of the inter-firm channel. The mechanism

is quite intuitive: by making unemployment workers better off, especially low-skilled

workers, they become more selective when choosing a job. The congestion effects of low-

skilled workers are mitigated and high-skilled workers end up in better matches. As

high-skilled workers are less likely to lose their job when the economy enters a recession,

fluctuations in labor income are less severe.

2 Data

In this section, I calculate statistics on the wage distribution along the business cycle. I fo-

cus on the elasticity and the standard deviation of wages for the entire workforce and for
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the workers who just exited unemployment. Putting the spotlight on the wage of newly

employed workers is important for both theoretical reasons linked to the Shimer’s puzzle

(see Shimer (2005) and Pissarides (2009)) and for practical reasons linked to my model-

ing strategy. In the model developed below, the distribution of wages for new hires is

well-behaved and has strong identification power. I first describe the methodology used

to calculate starting wage moments, which closely follows Haefke et al. (2013), before

analyzing the determinants of labor income shocks in the US.

2.1 Wage dynamics

To calculate statistics on the starting wage distribution in the US, I use the CPS Merged

Outgoing Rotation Groups (CPS MORG), which contain both employment and wage

variables for the period 1979 until nowadays.2 More specifically, I use the Center for

Economic and Policy Research ORG extracts3, which contain time-consistent CPS MORG

variables and wage variables corrected for top-coding in declared wages. To measure

real hourly wage, I use the CEPR MORG variable rw, which excludes overtime, tips and

commissions for hourly workers; but includes overtime, tips and commissions for non-

hourly workers. The dataset is trimmed to excludes observations where real 1989 hourly

wage is smaller than $0.50 or bigger than $200.

While the CPS was designed to offer repeated cross-section views of the US popu-

lation, it also has a longitudinal dimension. Every household that enters the CPS is in-

terviewed each month for 4 months, then ignored for 8 months, then interviewed again

for 4 more months. Usual weekly hours/earning questions are asked only at house-

holds in their 4th and 8th interviews.4 Hence, by comparing the same individual’s

hours/earnings in the 4th and 8th interviews, one can calculate the evolution of hourly

wage over a year period. One can also determine which workers transitioned from un-

employment to employment in between two interviews.

The process is complicated by the fact that keeping track of individuals in the CPS

MORG is not straightforward, as the unit of reference is a housing unit. About 60,000

housing units are designated for data collection each month. Each house is assigned

2Respondents are asked to report their hourly wage if they are hourly workers or to report their weekly
earning if they are paid by the hour.

3http://ceprdata.org/cps-uniform-data-extracts/cps-outgoing-rotation-group/
cps-org-programs/

4See https://www.nber.org/data/morg.html
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a household identifier (HHID) and an individual within the household is assigned an

individual line number (LINENO). Individuals not changing location in between two

interviews are in theory uniquely identified by the pair (HHID-LINENO). When a new

household moves in, a "household counter" variable (HHNUM) is incremented by 1. To

control for households moving in, I build an individual identifier as the combination

of (HHID-LINENO-HHNUM) and immutable characteristics (gender and ethnicity). As

an additional safety check, I compare the age of each potential individual between two

observations. If the age difference is less than or equal to 2, I validate the match. Oth-

erwise, the match is discarded. By choosing an age difference of 2 instead of 1, I allow

for some degree of coding error. Using the (HHID-LINENO-HHNUM-gender-ethnicity)

identifier, I can keep track of changes in the labor force status for individuals (employed,

unemployed or not in the labor force). I calculate deciles at the yearly frequency for the

starting wage distribution (workers currently employed and previously unemployed or

out of the labor force) and for the entire distribution of wages.

Key statistics to estimate the models are the volatility and elasticity of (real) wage

deciles with respect to changes in labor productivity. The response of wage deciles to

productivity is measured by the coefficient of a regression of the log real wage deciles

on log real labor productivity. As in Haefke et al. (2013), I estimate the regression in first

differences to avoid spurious correlation if wages and productivity are integrated:

∆ log(wd,t) = αd + ηj∆ log(yt) + εd,t (1)

where wd,t denotes the dth wage decile at time t and yt is a measurement of labor

market productivity at time t.5 I estimate equation (1) on a sample restricted to men

and women in between 25 and 60 years old working in the private sector, with series

aggregated at the yearly frequency. While data is available starting in 1979, I restrict

the sample to a period starting with the Great Moderation in 1984, as in Haefke et al.

(2013). The period 1979-1983 is marked by large volatility in macro variables and by

a substantial drop in the real minimum wage, which pushes downward the estimates

of Table 1. Results are presented in Table 1. Consistent with the empirical literature (see

Pissarides (2009)), I find that wages for new hires are much more sensitive to variations in

5To measure labor productivity, I use real output per hour of all persons in the non-farm (OPHNFB)
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labor productivity than in the series for aggregate wages. My point estimates are slightly

less than reported by Haefke et al. (2013)6, but of the same order of magnitude. Wage

rigidity in on-going contracts is important because it speaks against using a continuously-

renegotiated Nash bargaining to determine wages. If wages are the solution of the Nash

sharing rule, every movement in aggregate productivity leads to variations in workers’

wages, which is at odds with the data.

To estimate the volatility of each wage decile, I first detrend series using a linear trend

or a HP filter. Results are presented Table 2. Two facts are worth noting. Firstly, wage

deciles for new hires are much more volatile than the overall population. Depending

on whether detrending is done using a linear trend or an HP filter, the volatility of the

median wage for new hires is between 40% and 100% higher than the general population.

Secondly, when considering the sample of all workers, lower percentiles tend to be more

volatile compared to the top of the wage distribution. This pattern is easily explained by

the fact that the lower percentiles of the wage distribution are predominantly impacted

by the wage of new hires, which are more volatile than the wage of workers in ongoing

contracts.
6When the authors do not control for education (as it is the case in this paper), they find an aggregate

wage elasticity of 0.16 for all workers and 0.54 for new hires for the period 1984 - 2006. When the authors
control for difference in obervables characteristics, they find and elasticity of 0.24 for all workers and 0.79
for new hires.
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Table 1: Elasticity of wage and starting wage deciles in the US: 1984 - 2017

New hires All workers

ηj p-value ηj p-value

P10 0.44 0.07 0.20 0.37
P20 0.32 0.27 0.13 0.45
P30 0.34 0.21 0.18 0.29
P40 0.31 0.32 0.18 0.24
P50 0.35 0.21 0.12 0.41
P60 0.42 0.09 0.30 0.06
P70 0.37 0.17 0.26 0.04
P80 0.45 0.20 0.28 0.02
P90 0.65 0.08 0.46 0.00

Notes: This table shows p-values and point estimates for the regression (1), measuring the sensitivity
of wage deciles to changes in aggregate labor productivity. To measure productivity, I use real output
per hour of all persons in the non-farm sector (OPHNFB). To measure hourly wage, I use the series ‘rw‘
from the CEPR CPS ORG Extract, which converts hourly pay to constant 2018 dollars using the CPI-U-RS
and corrects for top-coding. For calculations involving starting wages, the years 1986, 1995 and 1996 are
excluded from the sample. For years 1986 and 1995-1996, I find only a limited number of workers transiting
from unemployment to employment relative to other years (less than 1250 workers). Digits were rounded
to the nearest hundredth.
Sources: CEPR CPS ORG Extract (http://ceprdata.org/cps-uniform-data-extracts/
cps-outgoing-rotation-group/cps-org-data/) and U.S. Bureau of Labor Statistics retrieved from
FRED, Federal Reserve Bank of St. Louis https://fred.stlouisfed.org/series/OPHNFB

Table 2: Volatility of wage and starting wage deciles in the US: 1984 - 2017

New Hires All workers
Volatility Ratio

New hires/All workers

Linear trend HP-filter Linear trend HP-filter Linear trend HP-filter

P10 0.041 0.019 0.036 0.017 1.14 1.14
P20 0.044 0.021 0.038 0.011 1.17 1.98
P30 0.051 0.019 0.029 0.012 1.77 1.61
P40 0.049 0.024 0.028 0.010 1.75 2.27
P50 0.039 0.020 0.028 0.010 1.39 1.98
P60 0.043 0.018 0.026 0.012 1.65 1.53
P70 0.041 0.020 0.022 0.010 1.85 2.00
P80 0.047 0.025 0.022 0.009 2.11 2.81
P90 0.045 0.026 0.024 0.010 1.82 2.59

Notes: This table the standard deviation of deciles of the log real wage distribution for new hires and all
workers. The log of wage deciles were detrended using a linear trend or using a HP-filter with a smoothing
parameter equal to 6.5. For calculations involving starting wages, the years 1986, 1995 and 1996 are
excluded from the sample. For these years, I am able to find only a limited number of workers transiting
from unemployment to employment relative to other years (less than 1250 workers).
Sources: CEPR CPS ORG Extract (http://ceprdata.org/cps-uniform-data-extracts/
cps-outgoing-rotation-group/cps-org-data/).
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2.2 Labor Income Shocks

Labor income shocks are defined as the unpredictable part of labor income changes. Let

wi,t denote the real hourly wage of individual i at time t. I first project wi,t on a set of

observable characteristics:

log(wi,t) = xi,t
′βw + ε i,t (2)

where xi,t includes a constant, age and age square, marital status, education level

and a linear time trend to capture long-run dynamics impacting real wage. Results are

presented in Table 3. Log hourly wage is an increasing and concave function of age; a

higher education level is associated with a higher hourly wage; holding other factors

constant, women earn 28% less than men. By construction, the residual ei,t ≡ log(wi,t)−

xi,t
′ β̂w is orthogonal to the set of observable variables included in the right hand side of

equation (2). I construct an hourly wage index orthogonal to observable characteristics

as follows:

log(w̃i,t) = log(wi,t) +
(

x̄′ − xi,t
′)β̂w (3)

where x̄′ denotes the average observable characteristics across individuals and peri-

ods. By construction ∆ log(w̃i,t) ≡ log(w̃i,t) − log(w̃i,t−1) measures the (log) difference

in hourly wage that cannot be explained by observable factors. Note that by taking the

difference for the same individual i, unobservable individual fixed effects that may have

explained parts of labor income changes are removed. I apply the same methodology

for weekly hours worked, by first fitting a linear model and then removing predictable

changes in hours. Point estimates for the linear model are presented in table 4. Let ∆h̃i,t

denote the unpredictable part of changes in weekly hours worked, which is calculated

according to the following formula:

∆h̃i,t =
(
hi,t − hi,t−1

)
−
(
xi,t−1

′ − xi,t
′)β̂h (4)

I generate a measurement of weekly labor income orthogonal to changes in observ-
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able factors, denoted by ỹi,t, using w̃i,t and h̃i,t:

ỹi,t = h̃i,t × w̃i,t (5)

The resulting ỹi,t, as well as h̃i,t and w̃i,t and are reported in Figure 5. Visual inspec-

tion of Figure 5 indicates that recessions years are marked by a contemporaneous drop

in mean hours worked. The early 1980s and 1990s recessions were characterized by a

contemporaneous drop in the mean real hourly wage, but the early 2000s recession and

the Great Recession of 2008-2009 were inflexion points, with a decrease in the mean real

hourly wage following with a lag. To complement this picture at the aggregate level,

I calculate the probability that a worker experiences certain events. At the individual

level, the probability of losing more than 0.5 times the standard deviation in real weekly

earnings (approximately $579) jumps by 1.24 percentage points in recession (see tables 5

and 6). The drop in real weekly earnings is caused by a decrease in hourly wage and a

decrease in hours worked. Large negative changes in hours worked are more frequent in

recession7 and the probability of a large increase in hours worked declines.

7A 2σ decrease in hours worked corresponds to a drop in weekly hours worked of approximately 19
hours.
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Table 3: Regression log wages

Dependent variable: log hourly wage log(wi,t)

age 0.044∗∗∗

(0.0002)
age2 −0.0004∗∗∗

(0.00000)
married 0.080∗∗∗

(0.0005)
trend 0.001∗∗∗

(0.00002)
HS 0.242∗∗∗

(0.001)
some college 0.392∗∗∗

(0.001)
college 0.691∗∗∗

(0.001)
advanced 0.868∗∗∗

(0.001)
woman −0.280∗∗∗

(0.0004)
constant 1.601∗∗∗

(0.004)

Observations 5,309,050
R2 0.281
Adjusted R2 0.281
Residual Std. Error 0.487 (df = 5309040)
F Statistic 230,227.100∗∗∗ (df = 9; 5309040)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 4: Regression weekly hours worked

Dependent variable: weekly hours worked hi,t

age 0.280∗∗∗

(0.004)
age2 −0.003∗∗∗

(0.00005)
married −0.438∗∗∗

(0.009)
trend −0.004∗∗∗

(0.0004)
HS 0.776∗∗∗

(0.015)
some college 1.101∗∗∗

(0.016)
college 2.495∗∗∗

(0.017)
advanced 4.315∗∗∗

(0.019)
woman −5.398∗∗∗

(0.008)
constant 35.462∗∗∗

(0.077)

Observations 4,735,952
R2 0.096
Adjusted R2 0.096
Residual Std. Error 9.087 (df = 4735942)
F Statistic 55,871.350∗∗∗ (df = 9; 4735942)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Figure 1: Weekly earnings, hourly wage and hours worked

Notes: This figure shows the year-specific mean values for the residualized weekly hours worked h̃i,t, the
residualized real hourly wage w̃i,t, and the implied weekly labor income ỹi,t = h̃i,t × w̃i,t. Vertical lines
represent NBER recessions.

Table 5: Probability of changes in hourly wage, weekly earnings and hours along the
business cycle

w̃i,t w̃i,t ỹi,t ỹi,t h̃i,t h̃i,t

Recession No Yes No Yes No Yes

Pr(∆xit < −2σ) 2.36% 2.37% 2.63% 2.67% 3.81% 4.00%
Pr(∆xit < σ) 9.20% 9.64% 9.77% 10.45% 10.82% 10.94%
Pr(∆xit < 0.5σ) 19.47% 20.26% 19.99% 21.23% 18.14% 18.78%
Pr(∆xit > 0.5σ) 20.56% 20.37% 21.24% 21.04% 18.84% 17.72%
Pr(∆xit > σ) 9.68% 9.72% 10.36% 10.34% 11.37% 10.40%
Pr(∆xit > 2σ) 2.54% 2.42% 2.85% 2.66% 4.04% 3.90%

Notes: This table displays the probability that a yearly difference in xit is above or below certain threshold
σ, which denotes the standard deviation of ∆xit. w̃i,t denotes the hourly wage of worker i at time t, net of
net of predictable factors (age, education, etc). h̃i,t denotes weekly hours worked net of predictable factors.
ỹi,t denotes the weekly labor income of individual i at time t.
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Table 6: Difference in the probability of changes in hourly wage, weekly earnings and
hours

w̃i,t ỹi,t h̃i,t

∆ Pr(∆xit < −2σ) 0.01% 0.04% 0.19%
∆ Pr(∆xit < −σ) 0.44% 0.68% 0.12%
∆ Pr(∆xit < −0.5σ) 0.78% 1.24% 0.64%
∆ Pr(∆xit > 0.5σ) -0.19% -0.20% -1.12%
∆ Pr(∆xit > σ) 0.03% -0.02% -0.97%
∆ Pr(∆xit > 2σ) 0.13% -0.19% -0.14%

Notes: This table displays the difference (recession minus expansion) in the probability that a yearly
difference in xit is above or below certain threshold. The threshold value σ denotes the standard deviation
of ∆xit. w̃i,t denotes the hourly wage of worker i at time t, net of net of predictable factors (age, education,
etc). h̃i,t denotes weekly hours worked net of predictable factors. ỹi,t denotes the weekly labor income of
individual i at time t.

3 Model

The empirical section underlined that (i) wages of newly hired workers are correlated

with productivity, while wages in ongoing contracts are quite rigid (ii) short-term down-

side risks in labor income are mainly driven by losses in hours. In this section, I develop a

model that delivers both features and that allows me to decompose labor income risk be-

tween a part that is driven by workers’ characteristics and another that depends on firms.

To model the employment side, I choose the framework of Lise and Robin (2017), which

comes with a natural notion of sorting. Because search is random, workers may not

necessarily meet with their optimal firm type, as measured by complementarities in the

production function. An alternative framework featuring two-sided heterogeneity and

aggregate uncertainty is the model of Schaal (2017), built upon the directed search model

of Menzio and Shi (2010). However, it is hard to define sorting in the latter framework be-

cause the directed search assumption generates a constrained efficient market outcome.

Conditionally on the state of the economy, workers are always is the best match the can

achieve.

My contribution in terms of modeling is to develop an efficient technique to solve

for the wages. The key insight is that (i) the employment problem is independent from

determination of wages (ii) while the wage process depends on the employment process,

this dependency is rather mild. That is, while the wage problem is not recursive (the state

variable is infinite dimensional), a dimension reduction in the spirit of Krusell and Smith
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(1998) can be used. The wage problem is particularly well-behaved because the time

series needed for the dimension-reduction step are independent from the value function

for wages.

3.1 Workers, Firms and Timing

The economy is populated by a continuum of risk-neutral and infinitely-lived workers

with mass 1. A worker can be either employed or unemployed. Workers differ in a skill

parameter x distributed according to a density `(x). There is a continuum of risk-neutral

firms, differing by a productivity parameter y uniformly distributed on [0, 1]. Firms do

not need capital to operate and can only hire one worker at a time. Firms can freely

enter the market and do so until the value of an unfilled vacancy is zero. Firms advertise

positions through job placement agencies. The cost of posting v vacancies is given by

a strictly increasing and convex cost function c(.). In equilibrium, the marginal cost of

creating a vacancy is equal to the expected return of doing so. Aggregate uncertainty

stems from an aggregate productivity parameter z that follows an AR(1) process:

zt+1 = ρzzt + σzεt+1 (6)

with εt+1 an i.i.d. Gaussian random variable with zero mean and unit variance. The value

of home production for a worker of type x is given by b(x, zt) and the value of output

for a worker of x working with a firm of type y is denoted by p(x, y, zt). The timing is as

follows. The measure of x − y matches (jobs) at the beginning of period t is denoted by

ht(x, y). Because workers are either employed or unemployed, the following accounting

identity holds:

`(x) = ut(x) +
∫ 1

0
ht(x, y)dy (7)

where ut(x) denotes the measure of workers of type x unemployed at the beginning

of period t. The aggregate productivity variable changes from zt−1 to zt. Right after the

change in productivity, workers may lose their job for exogenous or endogenous rea-

sons. Job search, matching and wage setting happen in a sub-period t+. The measure

of matches surviving job destruction is denoted by ht+(x, y) and the measure of unem-

ployed workers in the sub-period t+ is denoted by ut+(x). Unemployed workers and
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employed workers both produce a search effort Lt, which is linear aggregation of indi-

vidual efforts:

Lt =
∫ 1

0
ut+dx + s

∫ 1

0

∫ 1

0
ht+(x, y)dxdy (8)

The free entry condition on the firm’s side implies that the marginal cost of posting

one vacancy is equal to the expected value of a job opening:

c′(vt(y)) = qt Jt(y) (9)

where Jt(y) denotes the expected value of a contact by a vacancy of type y and qt is the

probability (per recruiting effort) that a firm contacts a worker. Because the cost function

is assumed to be increasing and convex, c′(.) can be inverted vt(y) = (c′)−1(qt Jt(y)
)
.

The total number of vacancies in period t is obtained by integrating over firm types Vt =∫
vt(y)dy. The total number of meetings at time t, denoted by Mt, is the result of workers’

search efforts and firms’ vacancy posting behavior. A matching function M(.) is used to

model the meeting of both sides of the labor market:

Mt = M(Lt, Vt) (10)

The probability for a worker to meet a vacancy is the ratio of the number of meeting to

the aggregate search effort λt = Mt
Lt

. The probability that a firm contacts any searching

work qt is the ratio of the number of meeting to the total number of vacancies qt =
Mt
Vt

.

3.2 Wage setting

Wages are determined according to the sequential auction framework, as in Robin (2011)

or Postel-Vinay and Turon (2010). Unemployed workers have zero bargaining power

and receive their reservation wage. Employed workers search for alternative employers.

When they meet another firm, workers reveal the meeting to their current employer. A

Bertrand competition between the incumbent and the poaching firm is triggered, which

results in either a wage increase and/or a job-to-job transition.

In this environment, two properties are absolutely essential. Firstly, the value of un-

employment to a worker of type x when the aggregate productivity level is zt, denoted by
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U(x, zt), is independent from the distribution of matches ht(x, y). Secondly, the joint sur-

plus of a match, denoted by S(x, y, z), does not depend on ht(x, y) either. The functions

U(.) and S(.) are solution of the following functional equations:

U(x, zt) = b(x, zt) +
1

1 + r
Ezt+1|zt

[
U(x, zt+1)

]
(11)

S(x, y, zt) = p(x, y, zt)− b(x, zt) +
1− δ

1 + r
Ezt+1|zt

[
max

(
0, S(x, y, zt+1

)]
(12)

where r is the interest rate. The expectation operator is taken with respect to next period’s

aggregate productivity level only. Equations (11) and (12) can be trivially solved by value

function iteration.

Two points are worth emphasizing. Firstly, the joint surplus of match S(x, y, zt) does

not depend on the job meeting rate λt. Independence from the job meeting rate in turn

implies the joint surplus of a match does not depends on the distribution of matches

across skill and firm productivity types ht(x, y), an infinite dimensional object. Indepen-

dence of S(x, y, zt) from the job meeting rate hinges on unemployed workers having zero

bargaining power. Secondly, the joint surplus of a match does not depend on wages. The

fact that S(x, y, zt) does not depend on wages rests on the assumption that workers and

firms are risk neutral. Within a match, the wage is an instrument to decide the split of the

joint surplus between workers and firms. Because utility is linear, the allocation of the

surplus between the two parties does not modify the surplus itself. Independence of the

joint surplus of a match from ht(x, y) and ht(x, y, w) are both essential when developing

an algorithm to solve efficiently the wage process.

Knowledge of the joint surplus of a match S(x, y, zt) is sufficient to determine both

job feasibility and job-to-job movements. Using this fact, the employment side of the

model can be closed. The assumption of zero bargaining power for unemployed workers

and the sequential auction hypothesis yield the following expression for the the expected

value of a contact:

Jt(y) =
∫ 1

0

ut+(x)
Lt

max
(
0, S(x, y, zt+1

)
dx

+ s
∫ 1

0

∫ 1

0

ht+(x, y′)
Lt

max
(

0, S(x, y, z)− S(x, y′, z)
)

dxdy
(13)
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The first term is the expected value of hiring from the pool of unemployed workers,

while the second term is the expected value of poaching workers from less productive

firms. The measure of x − y matches in the sub-period t+, surviving exogenous and

endogenous job destruction is:

ht+(x, y) = (1− δ)11{S(x, y, zt) ≥ 0}ht(x, y) (14)

The measure of matches at the end of period t takes into account the measure of

workers moving to more productive poachers, the measure of workers poached from

less productive firms, and the inflow of workers hired from unemployment:

ht+1(x, y) = ht+(x, y)
[
1− s

∫ 1

0
λt

vt(y′)
Vt

11{S(x, y′, zt) > S(x, y, zt)}dy′
]

+ s
∫ 1

0
ht+(x, y′)λt

vt(y)
Vt

11{S(x, y, zt) > S(x, y′, zt)}dy′

+ ut+(x)λt
vt(y)

Vt
11{S(x, y, zt) ≥ 0}

(15)

4 Solving for the wages

Let Wt(x, y) denote the value of a job to a worker x working with a firm of type y at time

t. In the class of models with search frictions and aggregate uncertainty, Wt(x, y) gener-

ally depends on next period’s job meeting rate λt+1. If the job meeting rate is high, an

employed worker is more likely to receive a promotion or to change job. The job meeting

in the future thus impacts the reservation wage of workers today. The job meeting rate

is itself a function of the current distribution of matches ht(x, y). Indeed, ht(x, y) affects

both firms’ expected value of posting vacancies (equation (13)) and workers’ search ef-

fort (equation (8)). If no additional assumptions are made, the relevant aggregate state

variable for the determination of wages contains the joint distribution of matches ht(x, y).

A convenient assumption is to posit that a contract is an agreement to receive a given

share of the match surplus S(x, y, zt). Given that the surplus does not depend on the dis-

tribution of matches h(x, y), this property is inherited by Wt(x, y). This path is followed

by Lise et al. (2017). Yet, this assumption implies that the wage changes every time z

does, even when workers or firms have no credible threat to quit or change job. The

empirical analysis underlined that wages in ongoing contracts are rigid, which suggests
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that an alternative route could be considered. One alternative is to define a contract as

an agreement to a constant wage w, which can be re-bargained by mutual consent only.

This is the path I explore in this paper. I resolve the difficulty of having ht(x, y) in the

aggregate state variable by realizing that the dependency of Wt(x, y) on ht(x, y) is rather

mild. As a result, dimension reduction tools from the literature on heterogeneous agents

can be easily applied.

4.1 The value of a job to workers

The value of a y job to a worker of type x, with a wage equal to w, when the aggregate

state variable is Γt ≡
(
zt, ht(x, y)

)
writes:

W(x, y, w, Γt) = u(w) +
1

1 + r
Et

[(
δ + (1− δ)11(S(x, y, zt+1) < 0)

)
U(x, zt+1)

(1− δ)11(S(x, y, zt+1) ≥ 0)
(

sλ(Γt+1)
∫ 1

0

vt(y′, Γt+1)

V(Γt+1)
I(x, y, y′, zt+1)dy′

+ (1− sλ(Γt+1))R(x, y, w, Γt+1)
)] (16)

with

I(x, y, y′, zt) =


S(x, y, zt) if S(x, y′, zt) > S(x, y, zt) ≥ 0

S(x, y′, zt) if S(x, y, zt) > S(x, y′, zt) > 0

0 else

(17)

and

R(x, y, w, Γt) =


W(x, y, φ0(x, y, Γt), Γt) if ∆(x, y, w, Γt) < 0 ≤ S(x, y, zt)

W(x, y, φ1(x, y, Γt), Γt) if ∆(x, y, w, Γt) > S(x, y, zt) ≥ 0

W(x, y, w, Γt) else (status quo)

(18)

The continuation value in equation (16) contains three components. The first line

takes into account the probability that an unemployed worker looses her job, which

could happen for exogenous or endogenous reasons. In case of a job loss next period, the

worker receives the value of unemployment U(x, zt+1). If the worker stays employed,
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two cases can occur. Either the worker meets with another firm, which is taken into ac-

count in the second line of equation (16). Or the no meeting occurs, but re-bargaining is

still possible if one of the two parties has a credible threat to break the match. Intra-firm

re-bargaining is taken into consideration in the third line of equation (16).

The function I(.) captures wage changes following a meeting with an alternative em-

ployer. If the poaching firm, characterized by a productivity parameter y′, is a better

match for a worker of type x, the worker changes job and gets the full match surplus

from its previous employer. If the poaching firm is not a better match for a worker of

type x, the worker reveals the meeting to its current employer. The current employer

makes a counter-offer that matches the best offer that firm y′ can make. If the poaching

firm is a not a credible employer, the meeting is not revealed and has no impact on the

current match.

The function R(.) takes into account intra-firm re-bargaining. If a worker has a cred-

ible threat to leave, the wage is re-bargained up to φ0(x, y, Γt). This happens when the

worker’s surplus ∆(x, y, w, Γt) ≡ W(x, y, w, Γt)−U(x, zt) is negative. When a firm’s sur-

plus Π(x, y, w, Γt) is negative, the wage is re-bargained down to φ1(x, y, Γt). The firm has

a credible threat to break the match when the worker’s surplus is greater than the joint

surplus of a match S(x, y, zt) ≡ ∆(x, y, w, Γt) + Π(x, y, w, Γt).

4.2 Dimension reduction

An important feature of equation (16) is that the endogeneous distribution of matches

ht(x, y) only matters through next period’s job meeting rate λ(Γt+1) and next period’s

endogenous distribution of vacancies q(y, Γt+1) ≡ v(y, Γt+1)/V(Γt+1). To make a deci-

sion today, firms and workers only need to forecast 3 objects: next period’s aggregate

productivity level zt+1 (which is trivial given the AR(1) assumption (6)) and the duo

(λ(Γt+1), q(y, Γt+1)). To reduce the dimension of the relevant state variable to a finite

dimensional object, let us follow a strategy similar to the one employed by Krusell and

Smith (1998). Let us postulate that agents use a simple parametric forecasting rule to

predict next period’s job meeting rate:

λt+1 = fλ(Ω|θλ) (19)
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with Ω ≡ (zt+1, λt) ∪ Φ, where Φ contains relevant variables known in the current pe-

riod.8 Agents also use a simple parametric rule to keep track of the endogenous distribu-

tion of vacancies q(y, Γt+1). As in Algan et al. (2008) or Winberry (2018), my strategy is

to use a parametric function q(y|qt+1) to approximate q(y, Γt+1), where qt+1 is a finite-

dimensional vector. In practice, I use a Beta density, which performs extremely well.9

Agents are endowed with an additional forecasting rules to keep track of the shape pa-

rameters of the Beta density qt+1 = (at+1, bt+1):

qt+1 = fq(Ω|θq) (20)

Conditional on the forecasting rules θ ≡ (θλ, θq), the value of a y job to a worker of

type x with wage w can be written as:

W(x, y, w, zt, λt|θ) = w +
1

1 + r
Et

[(
δ + (1− δ)11(S(x, y, zt+1) < 0)

)
U(x, zt+1)

(1− δ)11(S(x, y, zt+1) ≥ 0)
(

sλt+1

∫ 1

0
q(y|qt+1)I(x, y, y′, zt+1)dy′

+ (1− sλt+1)R(x, y, w, λt+1, q(y|qt+1))
)] (21)

The parameter values for the forecasting rules θ can be estimated by Monte-Carlo by

simulating an economy for a long period of time. Importantly, unlike in the model of

Krusell and Smith (1998), the Monte-Carlo step and the calculation of the value function

step are independent from each others. The time series needed to estimate θ, can be sim-

ulated without any reference to the value of a job W(.). In a setting with heterogeneity

and aggregate uncertainty, one generally has to find a fixed point for the value functions

and the forecasting rules. In the present framework, because the forecasting rules and

the value functions are orthogonal to each others, W(.) has to be calculated only once.

Besides the computational edge of the present setting, I see the main advantage of the

current setting as a theoretical one. Conditional on the forecasting rules θ, the Bellman

operator implicitly defined in equation (21) is a contraction. Hence, W(.) exists and is

8For instance, Φ may contain zt, the square of λt and an interaction term between λt and zt.
9Using a histogram to approximate q(y, Γt+1), as in Reiter (2009), is an attractive alternative.

Agents would forecast the value of q(y, Γt+1) on a deterministic grid with N elements: qt+1 =(
q1;t+1(y), q2;t+1(y), ..., qN;t+1(y)

)
= fq(Ωt|Θq)). If the economy features N discrete firm types instead of

a continuum, this approach amounts to assuming that agents forecast the number of vacancies posted by
each firm type. I discuss this alternative in the Appendix.
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unique.

In practice, I build Ω so that it contains (zt+1, zt, λt), their square and interactions

terms. I use the LASSO to determine which variables are important to forecast next pe-

riod’s job meeting rate. A simple forecasting rule with only first order terms emerges

from this procedure:

λt = −0.141 + 0.675λt−1 + 0.194zt

This result is reminiscent of the approximate aggregation finding, prevalent in macroeco-

nomic models with heterogeneous agents. While a priori the state variable is infinite

dimensional, once individual policy rules are aggregated, a simple rule emerges from

complexity. Using the LASSO generates forecasting rules that are robust to over-fitting,

as measured by the out-of-the-sample maximum absolute percentage error. A series of

accuracy tests is reported in the Appendix (see section C.1).

4.3 Evolution of wages

Let us introduce the notation Γ̂t ≡ (zt, λt|θ̂), denoting the approximate aggregate state

variable (conditional on the forecasting rule θ̂). At every period t, each firm y offers

three types of wages for each worker of type x. A starting wage φ0(x, y, Γ̂t) is offered to

worker moving out of unemployment, or when the worker’s surplus gets negative (and

the match is still feasible). The starting wage φ0(x, y, Γ̂t) is implicitly defined by

W(x, y, φ0(x, y, Γ̂t), Γ̂t) = U(x, zt) (22)

When the firm’s surplus is negative (and the match is still feasible), the wage is re-

bargained down to φ1(x, y, Γ̂t). This wage is implicitly defined by

W(x, y, φ1(x, y, Γ̂t), Γ̂t) = S(x, y, zt) (23)

When an employed worker contacts another firm, the resulting wage, denoted by

φ2(x, y, y′, Γ̂t), depends on the incumbent and the poaching firms:

φ2(x, y, y′, Γ̂t) =


φ1(x, y′, Γ̂t) if S(x, y, zt) > S(x, y′, zt) > 0

φ1(x, y, Γ̂t) if S(x, y′, zt) > S(x, y, zt) ≥ 0
(24)
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If a worker x, currently working with firm y, meets with y′ (a less productive match

compared to firm y), firm y responds by offering the maximum wage firm y′ can offer:

φ1(x, y′, Γ̂t). If firm y′ is a better match for worker x, firm y′ offers a wage such that firm

y’s maximum offer is not enough to retain worker x.

4.4 Distribution of (starting) wages

The flow equation for the joint evolution of matches and wages, denoted by ht(x, y, w),

is complicated since it involves its past values (see the Appendix). It is also cumbersome

to approximate ht(x, y, w) since the wage dimension is inherently continuous. One could

use the method developed in Young (2010) to approximate ht(x, y, w), or use a panel with

a sufficiently high number of agents. When estimating the model, I use a much simpler

endogenous object: the distribution of starting wages for workers exiting unemployment,

denoted by ht,0(x, y) ≡ ht(x, y, φ0(x, y, Γ̂t)). Each period, the equation for ht,0(x, y) solves:

ht,0(x, y) = ut+(x)λt
v(y, Γ̂t)

V(Γ̂t)
11{S(x, y, zt) ≥ 0} (25)

Contrary to the joint distribution of matches and wages, ht,0(x, y) is only bi-dimensional

and is memory-less, which makes it an appealing object for estimation purposes.

The model predicts interesting wage dynamics. On the one hand, when the aggre-

gate productivity parameter is high, workers expect it to stay high in the future. Higher

future prospects decrease today’s reservation wage, putting a downward pressure on the

starting wage ("expectation effect"). The expectation effect is particularly strong in the

present setting because workers have zero bargaining power. On the other hand, today’s

output value p(x, y, z) goes up, increasing the value of workers from the firms’ perspec-

tive, making them more willing to pay high wages ("output value effect").

These two effects are combined with the dynamics of sorting along the cycle, which

may alter the dynamics of aggregate wages through composition effects. A "cleansing"

effect implies that only the better matched workers stay employed during a downturn.

Simultaneously, firms may find it harder to employ good workers in recessions, driving

them to post more low-quality jobs (the "sullying effect", see Barlevy (2002)).
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5 Parametrization and Estimation

A key ingredient to jointly match wage and employment moments is to allow for home

production b(.) to be a function of the aggregate state variable zt. A tendency of b(x, zt)

to be increasing with z would limit the "expectation effect", which pushes down starting

wages in good times. Why would home production depend on z in the first place? One

leading reason is that home production contains unemployment benefits, which are gen-

erally equal to a fraction of past labor income. Empirically, labor income tends to increase

in booms, causing unemployment benefits to rise. I choose a parametrization that nests

the one in Lise and Robin (2017).10 More specifically, I use a home production of the form:

b(x, z) = (b0 + b1z)× b̄(x) (26)

where b̄(x) ≡ 0.7 × p(x, y∗(x), 1) and y∗(x) = arg maxy p(x, y, 1). The function b̄(x)

captures a fixed proportion of output when the worker is in his/her optimal match, at the

neutral technological state. The aggregate productivity level follows an AR(1) process of

the form:

zt+1 = ρzt + σ
√

1− ρ2εt+1 (27)

Worker’s ability types x are distributed according to a Beta distribution with shape pa-

rameters β1 and β2. Output at the match level is given by a polynomial of the form:

p(x, y, z) = z(p1 + p2x + p3y + p4x2 + p5y2 + p6xy) (28)

I assume the following simple form for the cost of posting v vacancies:

c(v) = c0
v1+c1

1 + c1
(29)

I assume a Cobb-Douglas function for the matching function:

Mt = αLω
t V1−ω

t (30)

10I do this for both theoretical and practical reasons. From a theoretical point of view, it is reassuring that
the parametrization can simplify to one that was proven to successfully replicate a vast array of employment
moments. From a practical perspective, it is convenient that my parametrization nests an existing one, as it
helps me in formulating a meaningful set of starting values.
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A likelihood-based estimation is unfeasible because the likelihood function is not

tractable. Instead, I estimate the model using the Simulated Method of Moments (SMM)

with US data. I include employment-related moments and moments from the starting

wage distribution. In practice, I include the elasticity of the first 9th deciles of the start-

ing wage distribution in the list of moments to be matched (see Tables 8 and 9). In total,

I use 35 moments to estimate 16 parameters. Practical details regarding the estimation

procedure are listed in the section G of the Appendix .

5.1 Estimated values and model fit

Estimated parameters are presented in Table 7. The parameter b1 is found to be positive.

Indexation of unemployment benefits on past labor income would imply this feature.

Because home production is slightly pro-cyclical, unemployed workers are more picky

during expansions. Having more selective workers generates mitigates the "expectation

effect" on the worker side, potentially pushing down the reservation wage. The impulse

response function indicates that the model features a "cleansing effect", with sorting qual-

ity between firms and workers declining by approximately 5% after a one-standard de-

viation productivity shock (Figure 2). The parameter estimates imply that the labor mar-

ket features associative matching, with high productivity firms preferring to match with

high productivity firms (see Figure 3). The value for the parameter s suggests that unem-

ployed workers are searching for a job with an intensity that is 16 times bigger than the

intensity of already employed workers.
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Table 7: Estimated Parameters

Parameter Value Estimated Description

r 0.05 No annual interest rate
α 0.501 Yes matching function parameter
ω 0.5 No matching function parameter
s 0.061 Yes search intensity parameter
c0 0.405 Yes vacancy posting cost parameter
c1 0.030 Yes vacancy posting cost parameter
δ 0.012 Yes exogenous separation rate
φ 0.083 Yes productivity shock parameter
ρ 0.999 No productivity shock parameter
β1 13.490 Yes worker heterogeneity parameter
β2 16.735 Yes worker heterogeneity parameter
p1 0.053 Yes value added parameter
p2 2.162 Yes value added parameter
p3 -0.157 Yes value added parameter
p4 8.818 Yes value added parameter
p5 -1.880 Yes value added parameter
p6 7.126 Yes value added parameter
b0 0.478 Yes home production parameter
b1 0.814 Yes home production parameter

Notes: Parameter values were estimated using the Simulated Method of Moments. Parameter values were
rounded to the nearest thousandths. I take the value of parameter ρ, characterizing the persistence of TFP
(at the weekly frequency) from Lise and Robin (2017).
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Figure 2: Impulse response function after a productivity shock

Notes: This figure shows the response of the unemployment rate Ut, the job meeting rate λt, the number of
vacancies Vt, and sorting after a one-standard deviation positive TFP shock. I quantify sorting using the
formula

sortxyt =
1
C

exp
(
−
∫ 1

0

∫ 1

0
ht(x, y)

(
y− y∗(x, zt)

)
dxdy

)
where y∗(x, z) is the firm type that would maximize the joint surplus of a match for a worker of type x
when the productivity parameter is equal to zt. C is a normalizing constant chosen such that the best
observed sorting value is equal to 1. A value of sortxyt below 1 indicates a sub-optimal pairing between
firms and workers, in the sense that production could be improved by reallocating workers to firms with
productivity types closer to y∗(x, zt).

Figure 3: Value of net production at the match level s(x, y, 1)

Notes: This figure shows a contour plot for the value of net production at the match level
s(x, y, 1) = p(x, y, 1)− b(x, 1) when the aggregate state variable zt is at its neutral state (zt = 1).
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Table 8: Elasticity of wage and starting wage deciles

New hires All workers

Data Model Data Model

P10 0.44 0.45 0.20 0.40
P20 0.32 0.38 0.13 0.32
P30 0.34 0.35 0.18 0.33
P40 0.31 0.34 0.18 0.30
P50 0.35 0.35 0.12 0.28
P60 0.42 0.40 0.30 0.31
P70 0.37 0.42 0.26 0.32
P80 0.45 0.68 0.28 0.39
P90 0.65 0.77 0.46 0.55

Notes: This table displays the elasticity of starting wage deciles with respect to changes in aggregate labor
productivity. The first column is based on the CEPR CPS ORG dataset and own calculations. The second
column is based on simulated data generated using the my novel parametrization. The fourth column is
based on simulated data generated using a sample of 1000 agents during 6000 periods (weeks), discarding
the first 1000 periods.

Table 9: Empirical and Simulated Employment Moments. US (1951-2012)

Data Model Data Model

E[U] 0.058 0.059 std[U27+] 0.478 0.150
E[U5+] 0.035 0.028 std[UE] 0.127 0.089
E[U15+] 0.018 0.010 std[EU] 0.100 0.058
E[U27+] 0.010 0.006 std[EE] 0.095 0.116
E[UE] 0.421 0.527 std[V/U] 0.381 0.333
E[EU] 0.025 0.032 corr[U, V] -0.846 -0.985
E[EE] 0.025 0.015 corr[U, VA] -0.860 -0.983

E[V/U] 0.634 0.251 corr[V, VA] 0.721 0.994
std[V] 0.206 0.188 corr[UE, VA] 0.878 0.957

std[VA] 0.033 0.046 corr[EU, VA] -0.716 -0.970
std[U] 0.191 0.146 corr[UE, EE] 0.695 0.947

std[U5+] 0.281 0.236 autocorr[GDP] 0.932 0.987
std[U15+] 0.395 0.257

Notes: Data columns are from Lise and Robin (2017). E[U] is the average quarterly unemployment rate.
E[U5+] , E[U15+] and E[U27+] are the average quarterly unemployment rates for more than 5, 15 and 27
weeks respectively. E[UE], E[EU] and E[EE] are the average quarterly job-finding, job-losing and job-to-job
transition rates. V denotes the number of vacancies, and VA is value added. std[x] denotes the standard
deviation of the variable x. corr[x, y] denotes the correlation between variables x and y. autocorr[x] denotes
the auto-correlation of variables x.
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5.2 Identification

I provide a heuristic justification of my identification strategy and I rely on numerical

tools to back up my intuitions. First of all, exit from unemployment and job-to-job mobil-

ity are key in determining the value of search efficiency α and the relative search intensity

between unemployed and unemployed worker s. A higher job-finding rate should be as-

sociated with a higher value of and more job-to-job transitions should indicate a higher

value for s. The steady-state value (or its long-run average) of the unemployment rate

is informative on the exogenous job-destruction rate δ. The unemployment rate for dif-

ferent duration and its volatility are informative on the distribution of types within the

economy. More long-term unemployment indicates a distribution of types tilted towards

low types. The elasticity of starting wages captures to what extent the "cleansing" ef-

fect (survival of better workers) and the "sullying" effect (firms posting low quality jobs)

dominate during recessions. Thus, deciles of the starting wage distribution provide valu-

able information on the matching function, the vacancy cost function, the distribution of

types and parameters for b(.) and p(.). Table 15, reporting values for the Jacobian of

the function mapping parameters to simulated moments f : p → m, largely confirms

these intuitions. In addition to the statistics discussed above, market tightness is found

to be key in disciplining the model. This not surprising given that the market tightness

contains information on both sides of the market. Interestingly, the partial derivatives

of f with respect to the deciles of the wage distribution are one or two order of mag-

nitude larger the partial derivatives involving employment moments. The information

contained in wages is substantial. More complex parametrization could potentially be

estimated using the extra information contained in the variation of wages.
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6 Labor income shocks and sorting

What are the main mechanisms behind labor income shocks? In particular, what is the

contribution of the inter-firm channel to variations over the business cycle? To quantify

the importance of the inter-firm channel on labor income shocks, I first measure the per-

sistence of labor income losses for displaced workers. If follow the literature on displaced

workers (see for instance Stevens (1997)) and run the following regression on simulated

data:

yit =
10

∑
k=0

δkDk
it + ε it (31)

The variable Dk
it is an indicator variable equal to 1 if worker i was a displaced worker

k periods ago. The coefficients δk measures the current effect of job displacement on yit. I

classify a worker as displaced if the worker experienced unemployment in year k for at

least 10 weeks and if the worker was poorly matched upon finding a new job. I consider

a worker to be poorly matched if the (absolute value) of the distance between the cur-

rent firm y and the optimal match y∗ is bigger than a threshold value 11. The left panel

of Figure 4 displays the recovery of yearly earnings, the number of weeks worked and

the hourly wage for displaced workers relative to non-displaced workers using simu-

lated data. Displaced workers experience on average a 37% drop in yearly labor income

the year of displacement, mainly driven by a loss in weeks worked. As the number of

weeks worked quickly recovers, the milder initial loss in terms of hourly wage takes

much longer to recover. Long-lasting labor earnings losses are driven by mismatches

after a job loss. As sorting improves over time, the initial loss in hourly wage slowly van-

ishes. Because search for better firm types is random, improvements in sorting takes time

to materialize. These results are consistent with the empirical patterns reported by the

literature on job displacement. The right panel of Figure 4, based on empirical work from

Huckfeldt et al. (2016), also shows that the initial impact of a job loss is mainly driven

by a loss in annual hours worked. However, as predicted by the model, the persistence

in labor earning losses is to be attributed to an enduring loss in wages. While the model

predicts that displaced workers eventually recover from a job loss, the right panel of Fig-

11As a threshold value, I use 2 times the standard deviation of the distances (absolute value difference)
between the current firm types and the optimal firm type y∗: |y− y∗|)
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ure 4 indicates that empirically there is a 5% permanent drop in wages. The permanent

drop in wages can be explained by a loss in human capital accumulation for displaced

workers, which is not included in the present model.

To further understand how labor income shocks and sorting are related, I run an ex-

periment in which I keep only one type of firm in the economy (the median firm). Results

are presented in Table 10. When the inter-firm channel is nonexistent, business cycle fluc-

tuations in yearly labor income are reduced by approximately 12% compared to the base-

line model with firm heterogeneity. The inter-firm channel is particularly important for

the tails of labor income changes. When the inter-firm channel is shut down, the change

over the business cycle in the probability of experiencing more than a 50% drop in labor

income over a year is reduced by approximately 19%. The change over the business cycle

in the likelihood of experiencing more than a 50% increase in labor income over a year is

reduced by 97.5%.

Why does sorting matter for changes in labor income over the cycle? In the present

model, changes in labor income are either caused by a change in employment status

(employed or unemployed) or by a change in wages. Changes in wages are driven by

the inter-firm channel. That is, the reallocation of workers from bad matches to better

matches. The inter-firm channel depends on the number of meetings occurring each

period. In a recession, the number of on-the-job meeting sλt plummets causing the inter-

firm channel to dry up. As a result, in the after-math of a bad productivity shock, workers

stay mismatched for longer period of time generating labor income losses. In an econ-

omy with only one type of firm, this dimension vanishes and the model generates more

modest fluctuations in labor along the business.
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Figure 4: Displaced workers and income losses

(a) Model (b) Data

Notes: The left panel shows the effect of job displacement on yearly labor income, the annual number of
weeks worked, and the hourly wage relative to workers who have not been displaced within the past ten
years. Calculations are based on simulated data. The right panel is from Huckfeldt et al. (2016), based on
data from the Panel Study of Income Dynamics from 1968 to 1997. It shows the (relative) effect of job
displacement on annual hours worked, yearly labor income, and hourly wage.

Table 10: Variations in the probability of labor income changes over the cycle

Changes in probabilities over the cycle

Data Baseline y = cst

A 0.164 0.149 0.133

∆ Pr(∆Incomeit < 50%) 1.3% 3.1% 2.5%
∆ Pr(∆Incomeit > 50%) -1.5% -1.4% -0.035%
∆ Pr(∆Incomeit < 25%) 2.9% 6.3% 5.5%
∆ Pr(∆Incomeit > 25%) -3.0% -4.4% -1.8%

Notes: The first column is based on data from Guvenen et al. (2014) (US data, 1995–96 versus 2008–9.). The
second and third columns are based on simulated data. The variable A is defined as the area between the
line representing the density gap and the x-absis. the pdf gap is defined as the pdf for (log(yt+1)− log(yt))

in recession minus the pdf for (log(yt+1) − log(yt)) in expansion. If the business cycle did not generate
changes in labor income, the density gap would be null and A would be equal to 0 (see Figure 9). Other
rows measure the change in the probability of a certain event relative to yearly labor income. For instance,
the row ∆ Pr(∆Income < 50%) measures the change in the probability that a worker loses more than 50% of
her labor income over a year (recession minus expansion). The second column is based on simulated data
from the model with the estimated parameters. The third column is based on simulated data with only one
type of firm (the median firm).

33



Figure 5: Change in labor income risk over the cycle and sorting

Notes: This figure shows the density gap, defined as the pdf for (log(yt+1)− log(yt)) in recession minus
the pdf for (log(yt+1)− log(yt)) in expansion. If the business cycle did not generate changes in labor
income, the density gap would be null. The blue line is the baseline model. The orange line is based on a
simulation with only one type of firm (the median firm).
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7 Optimal UI

The analysis has established that sorting between firms and workers is central for id-

iosyncratic labor income risk, especially when considering extreme labor income changes.

Can a government improve the market outcome using a simple unemployment benefit

rule? This question has already been explored by Lise et al. (2016) in a similar setting, but

without aggregate uncertainty. The authors find that the optimal unemployment scheme

delivers an improvement of 1.4%. One may wonder to what extent their findings extend

to a model with aggregate risk. One may also wonder to what extent the government may

attenuate fluctuations in labor income with a simple unemployment benefit scheme. Be-

fore analyzing the optimal unemployment benefit policy, what are the imperfections that

would justify government intervention in the first place? In a model featuring matching

and search frictions, there exist congestion externalities (Hosios (1990)). Some types of

workers may be searching too much, especially in the present setting in which workers

and firms are heterogeneous. Some high-type firms would probably post more vacancies

if they were certain to find only high-type workers on the labor market. For this reason,

it might be optimal that low-type workers search less, which could be incentives by pro-

viding a higher replacement rate. I solve for an optimal unemployment benefit equal to

a fix proportion of the expected labor income at the steady-state:

bUI(x) = b
∫ 1

0
p(x, y, 1)h(y|x)dy (32)

The unemployment insurance is funded by a proportional tax on match output
∫

bUI(x)u(x)dx =

τ
∫

p(x, y, 1)h(x, y)dxdy. The welfare criterion I use is the sum of market output (net of

taxes), plus home production and UI, minus the cost of creating vacancies:

Wb0 =
∫ 1

0

∫ 1

0
(1− τ)h(x, y)p(x, y, 1)dxdy +

∫ 1

0

(
b(x, 1) + bUI(x)

)
u(x)dx+

−
∫ 1

0
c(v(y))dy

(33)

Equation (33) underlines the mechanism at play. Taxing output hurts employed work-

ers and improves the welfare of unemployed workers. Yet, the composition of matches is

altered and firms may change the amount of vacancies they post. Results are presented
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in Figure 6. The optimal value for b0 is approximately 0.06, which is funded by a 1.3%

tax on output at the match level. This is slightly higher than the 0.95% tax rate found

in Lise et al. (2016). This tax on output is used to fund an unemployment insurance

that represents approximately 19.2% of the aggregate value of home production. The un-

employment insurance scheme rises the unemployment rate to approximately 7%. The

welfare gains are driven by a 13.16% increase in sorting and a decrease in the cost of cre-

ating vacancies, which are enough to offset the distortions created by the tax on output.

Table 11 underlines that UI stabilizes labor income by approximately 2%. This policy fos-

ters employment for high type workers and firms. The tax on output provides a safety

net for low-skilled workers more likely to bear the burden of unemployment along the

cycle.

Table 11: Variations in the probability of labor income changes over the cycle with the
optimal UI

Changes in probabilities over the cycle

Data Baseline UI

A 0.164 0.149 0.146

∆P(∆Incomeit < 50%) 1.3% 3.1% 3.1%
∆P(∆Incomeit > 50%) -1.5% -1.4% -1.2%
∆P(Incomeit < 25%) 2.9% 6.3% 6.2%
∆P(Incomeit > 25% -3.0% -4.4% -4.2%

Notes: The first column is based on data from Guvenen et al. (2014) (US data, 1995–96 versus 2008–9.). The
second and third columns are based on simulated data. The variable A is defined as the area between the
line representing the density gap and the x-absis. the pdf gap is defined as the pdf for (log(yt+1)− log(yt))

in recession minus the pdf for (log(yt+1) − log(yt)) in expansion. If the business cycle did not generate
changes in labor income, the density gap would be null and A would be equal to 0. Other rows measure the
change in the probability of a certain event relative to yearly labor income. For instance, the row P(Income <
50%decrease) measures the increase in the probability that a worker loses more than 50% of her labor income
over a year when the economy is in recession. The second column is based on simulated data from the model
with the estimated parameters. The third column is based on simulated data with only one type of firm (the
median firm).
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Figure 6: Optimal UI

(a) Welfare and b0 (b) Tax on output and b0

(c) Production and b0 (d) Sorting and b0

Notes: The top-left quadrant shows the link between the replacement rate b0 and welfare. Welfare is the
sum of net market production, home production, the total value of UI, minus the cost of creating vacancies.
The top right-quadrant shows the link between b0 and the corresponding tax rate on production τ. The
bottom-left quadrant shows the link between b0 and selected elements of the welfare function. The bottom-
right quadrant shows the link between b0 and an index measuring the quality of sorting between firms and
workers.

37



8 Conclusion

This paper analyzes the determinants of labor income changes over the business cycle.

The novelty in this analysis is to show that sorting between firms and workers matters

when considering fluctuations in labor income. The mechanism is quite intuitive. Be-

cause of search frictions on the labor market, workers and firms are not necessarily well

matched. The pairing between firms and workers is improved by the slow process of

job-to-job transitions. In a recession, less vacancies are posted and the inter-firm channel

dries up. Workers accumulate labor income losses by working with firms that are not

optimal for them. While the primary driver of income losses in recession is unemploy-

ment, the sorting channel accounts for 12% of fluctuations in labor income. A simple

policy can generate welfare gains in that context: unemployment insurance. By varying

the replacement rate, the government alters incentives for different types of workers. In

particular, low-skilled workers are more patient. High-skilled workers benefit from the

resulting reduction in congestion effects. Improved sorting is more than enough to offset

the distortion effects created by taxing output.

To arrive to this conclusion, I developed and estimated a dynamic search-and-matching

model with heterogeneous firms and workers. While a priori not tractable, the model

simplifies considerably by realizing that the state variable can be reduced to a finite di-

mensional vector, without losing much generality nor stability. The key to tractability

lies in the fact that employment flows can be determined in a first step, independently

from the wage allocation problem. While wages do dependent on next period’s job meet-

ing rate and distribution of jobs across firm and worker types, as it is generally the case

in dynamic search-and-matching models with heterogeneity, dimension reduction tech-

niques can be used. Because the simulated series needed to perform the dimension re-

duction step are independent from the wages, the value function characterizing to the

wage problem exists and is obtained immediately, without the need of an outer loop.

The clear separation of the employment problem from the determination of wages re-

sults from the combination of three assumptions: zero bargaining power for unemployed

workers, determination of wages according to the sequential auction framework and lin-

ear utility. The existence of an other set of assumptions implying a similar separation

between employment flows and wages is still an open question. In particular, relaxing
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the assumption of linear utility is important to analyze precautionary savings for this

class of models. The extent to which the conclusions of this paper can be extended to a

framework with risk-averse workers, having access to a risk-free asset, is currently being

investigated.
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A Numerical details

When estimating the model, I choose a rather coarse grid for the x and y dimensions

using 11 points. Given that these dimensions represent non-time varying discrete types,

this is done without loss of generality. When solving for the functions U(.), S(.) and W(.),

I treat z as a continuous dimension and I use Gaussian quadrature nodes. To produce re-

sults comparable with Lise and Robin (2017), I use an evenly-spaced discrete grid for z

when simulating time series, with 51 different values for z. Regarding the forecasting

rule f (Ω|θ), Ω contains a constant, log(zt), log(zt−1), λt, λt−1, their square and interac-

tions terms. I use the LASSO to estimate the forecasting rule, which has the advantage of

automatically selecting the relevant variables needed to make accurate and reliable pre-

dictions. 12 I solve W(x, y, z, λ|θ) by value function iteration. To calculate moments on

the full distribution of wages, I use a panel of 1000 agents. I simulate the panel for 6000

periods (weeks) and I drop the first 1000 observations to get rid of the potential impact

of initial values. To minimize the SMM objective function, I use a parallel multi-start ap-

proach. I start several Nelder-Mead algorithms in parallel with different starting values.

The global minimum is the minimum of the several minima for which convergence was

reached. The code is implemented in Julia 0.6.4 (see Bezanson et al. (2017)).

B Algorithm to solve and simulate the model

To solve the model, I proceed as follows:

1. Solve S(.) and U(.) by value function iteration, as in Lise and Robin (2017).

2. Simulate an economy for a long period of time and discard the first 10th observa-

tions. This step can be achieved independently of W(.). This generates a synthetic

sample containing (zt, λt)T
t=1 and any other variables of interest.

12For the LASSO, I use the package GLMNet.jl
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3. Find an estimate of the parametric forecasting rule, denoted by θ̂ .

4. Find a solution to W(x, y, w, Γ̂t|θ̂) by value function iteration.

5. Using W(x, y, w, Γ̂t|θ̂), U(x, zt) and S(x, y, zt), calculate the value of φ0, φ1 and φ2

for every t of the synthetic data.

C Accuracy of approximations

My computational strategy relies on two approximations: (i) next period’s job meeting

rate and parameters of q̃(y|qt) are well predicted by simple forecasting rules (ii) the en-

dogenous distribution of vacancies q(y) can reasonably be approximated by a parametric

function. This section shows that both approximations are accurate. This section also

shows that one may dispense with the parametric assumption for the distribution of va-

cancies and instead use a histogram.

C.1 Forecasting rules accuracy

I calculate how well forecasting rules predict the paths for λt and qt within the sam-

ple that was used to estimate the forecasting rules (within-sample prediction power). I

also simulate a new sample and I compare the actual realization of time series to the

predictions implied by the forecasting rule (out-of-the-sample prediction power). The

within-sample accuracy can be visualized in Figure . The estimated forecasting rules are

quite precise, as underlined in Table 14. For instance, the median percentage error for the

job meeting rate is only 0.13%. Is this number within a credible range? The literature on

rational inattention has described reasons why firms may optimally commit small errors.

The full optimization problem may too hard or too resource-consuming to solve. Firms

may decide to use only a fraction of the full information set each period (Mackowiak

and Wiederholt (2009))). The estimated forecasting rule for the job meeting rate is the

following simple linear relationship:

λt = −0.141 + 0.675λt−1 + 0.194zt
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The forecasting rules for the shape parameter of the Beta density are given by:

at = 129.236− 20.121λt−1 − 90.718zt

bt = 18.227− 21.445λt−1 − 6.704zt

While the list of potential predictors contains higher order terms and interaction

terms, the LASSO selects only first order terms.

Figure 7: Accuracy of forecasting rules

Notes: This figure shows the series for the job meeting rate λt and for the shape parameters of the Beta
distribution at and bt approximating the distribution of vacancies across firm types. The solid orange lines
represent the actual realization of the series. The blue lines are the series implied by the forecasting rules.
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Table 12: Forecasting rule accuracy for λt

Within-sample Out-of-the-sample

max abs % error 13.35 13.28
min abs % error 5.65e-6 3.59e-6
mean abs % error 0.27 0.22
median abs % error 0.13 0.08

Notes: This table shows the maximum, the minimum, the mean and the median absolute percentage error
made when using the predicted λ̂ instead of the actual λ, calculated as | λ−λ̂

λ |. The left column reports the
prediction error in the sample used to calculate the forecasting rule; the right column shows the error made
in a new sample, without re-estimating the forecasting rule.

Table 13: Forecasting rule accuracy for at

Within sample Out of the sample

max abs % error 35.09 35.10
min abs % error 3.70e-5 1.00e-5
mean abs % error 0.96 0.76
median abs % error 0.69 0.59

Notes: This table shows the maximum, the minimum, the mean and the median absolute percentage error
made when using the predicted â instead of the actual a, calculated as | a−â

a |. The left column reports the
prediction error in the sample used to calculate the forecasting rule; the right column shows the error made
in a new sample, without re-estimating the forecasting rule.

Table 14: Forecasting rule accuracy for bt

Within sample Out of the sample

max abs % error 20.53 20.19
min abs % error 5.76e-6 2.61e-5
mean abs % error 0.87 0.75
median abs % error 0.65 0.56

Notes: This table shows the maximum, the minimum, the mean and the median absolute percentage error
made when using the predicted b̂ instead of the actual b, calculated as | b−b̂

b |. The left column reports the
prediction error in the sample used to calculate the forecasting rule; the right column shows the error made
in a new sample, without re-estimating the forecasting rule.

C.2 Accuracy of approximating qt(y) using a parametric function

I approximate the distribution of vacancies across types qt(y) using a parametric func-

tion q̃(y|qt). Because the support for y is [0, 1] and q(y) is uni-modal, I use a Beta density
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characterized by two parameters at and bt. To quantify the error made when approxi-

mating the endogenous distribution of vacancies by a parametric counterpart, I use the

following measurement:

et =

∫ 1
0 c
(
|q̃(y|(ât, b̂t))− q(y, Γt)|

)
dy∫

c
(
q(y, Γt)

)
dy

(34)

where ât and b̂t are the shape parameters of the Beta density, calculated using the

forecasting rule and c(v) is the cost of posting v vacancies. The variable et measures

the cost of miss-allocated vacancies (the numerator), relative to the total cost of vacancy

posting (the denominator). If agents are perfectly rational, q(y, Γt) = q̃(y|(ât, b̂t)) and the

numerator is null.

Figure 8: Percentage error when approximating qt(y)

Notes: This graph shows et, which is a unit-less measurement of cost miss-allocation implied by using
q̃(y|(ât, b̂t)) to approximate q(y, Γt). The variable et is defined by

et =

∫ 1
0 c
(
|q̃(y|(ât, b̂t))− q(y, Γt)|

)
dy∫ 1

0 c
(
q(y, Γt)

)
dy

(35)

where c(v) is the cost of posting v vacancies; ât and b̂t are the shape parameters of the Beta density implied
by the forecasting rule. The maximum value for et is 0.950% and its median value is 0.151%.

C.3 Accuracy of approximating qt(y) using a histogram

One may dispense with the parametric assumption on the distribution of vacancies across

firm types qt(y). Instead, as in Reiter (2009), one may use a histogram to approximate
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qt(y). If the economy features N discrete firm types instead of a continuum, this approach

amounts to assuming that agents forecast the number of vacancies posted by each firm

type: qt+1 =
(
q1;t+1(y), q2;t+1(y), ..., qN;t+1(y)

)
= fq(Ωt|Θq)). This approach is without

loss of generality, because the y-dimension is already discretized when the model is nu-

merically solved. Agents are endowed with a linear forecasting rule qt+1 = ΘqΩt, where

qt+1 is a N × 1 vector, Θq a N × k matrix containing the parameters for the forecasting

rule, and Ωt a k× 1 matrix containing the information at time t relevant to predict qt+1.

Ωt contains (zt, zt−1, λt−1), their squares and interaction terms. As illustrated in Figure

9, the estimated forecasting rule is successful in predicting the distribution of vacancies

across firm types.

Figure 9: Forecasting rules for qt+1

Notes: This figure shows selected components of the distribution of vacancies across firm types
qt+1 =

(
q1;t+1(y), q2;t+1(y), ..., qN;t+1(y)

)
. The orange lines are the actual realizations of the series and the

blue lines are the values predicted by the forecasting rule qt+1 = ΘqΩt. Omitted components for qt+1 have
a negligible value.
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D BKM Algorithm

Throughout my exposition, I use the recursive formulation of a dynamic choice problem.

However, the algorithm designed by Boppart et al. (2018) using the sequence form, is

particularly attractive in my setting. The BKM algorithm uses the information contained

in the perfect foresight path of the economy after a MIT shock. In general, a shooting

algorithm has to be used to find this perfect foresight path, for which convergence prop-

erties are difficult to know a priori. In the present context, because the model is semi-block

recursive13, the algorithm of Boppart et al. (2018) can be easily used to find an approxi-

mation of the model. Semi-block recursivity ensures that BKM is well-behaved, because

the path for λt, qt(y) can be solved without reference to Wt(x, y). In practice, one could

proceed as follows:

1. Solve S(.) and U(.) by value function iteration

2. Starting from the steady-state with no aggregate uncertainty at t = 0, generate

a one-standard-deviation aggregate shock at time t = 1, which goes back to its

steady-state value (z = 1) at t = 2.

3. Solve for the transition path of for t = 2, ..., T.

4. Solve Wt(x, y, λt, qy(t)) by backward induction, starting from Wt(x, y, λt, qy(t)) =

WSS(x, y, λSS, qSS(y))

The perfect foresight path is obtained in a single step. If the model were not semi-

recursive, finding the perfect foresight transition path would be much more complicated.

The algorithm would have to be modified, with the addition of an outer loop, with no

guarantee of convergence:

1. Assume a path for endogenous economic variables Xt, including {λt, qy(t)}

2. Solve St(.), Ut(.) and Wt(.) by backward induction, using the path previously as-

sumed

3. Using St(.), Ut(.) and Wt(.), simulate forward the path of economic variables, gen-

erating Yt

13The employment problem is independent from wages. The wage problem depends on employment only
through the job meeting rate and the distribution of vacancies.
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4. If the distance between the paths Xt and Yt is sufficiently small, stop

5. Otherwise, repeat the steps 1-4

The main advantage of using the BKM algorithm over the method presented in the

full text, is that the parametric assumption for the distribution of vacancies is not required

anymore.

E Flow equations for the joint distribution of wage and employ-

ment

Two methods are available to simulate the joint distribution of wages and employment

status, denoted by ht(x, y, w). The first one is to simulate a panel with a sufficient num-

ber of agents. Then second one is to directly simulate the cross-sectional distribution

ht(x, y, w). In this section, I derive the flow equations for the second approach. Let

Ωt denote the support for wages at period t. Given our assumption on the wage pro-

cess, Ωt contains the starting wages and the promotions wages offers within that period

{φ0(x, y, Γ̂t), φ1(x, y, Γ̂t)}(x,y)∈[0,1]2 . Ωt also contains the wages inherited from past peri-

ods that were not altered by outside job offers or by intra-firm re-bargaining. The flow

equation for the distribution of starting wages ht(x, y, φ0(x, y, Γ̂t)) solves:

ht+1(x, y, φ0(x, y, Γ̂t)) = ht+(x, y, φ0(x, y, Γ̂t))×
(
1−

∫ 1

0
sλt

vt(y′)
Vt

11{S(x, y′, zt) ≥ S(x, y, zt)}dy′
)

+ ut+(x)λt
v(y, Γ̂t)

V(Γ̂t)
11{S(x, y, zt) ≥ 0}

+
∫

w∈Ωt\φ0(x,y,Γ̂t)
11{W(x, y, w, Γ̂t)−U(x, z) < 0}(1− sλt + sx,y)ht+(x, y, w)dw

(36)

where ht+(x, y, φ0(x, y, Γ̂t)) ≡ (1− δ)11{S(x, y, z) ≥ 0}ht(x, y, φ0(x, y, Γ̂t)) denotes the

measure of workers with wage φ0(x, y, Γ̂t) after endogenous and exogenous job destruc-

tion. The measure of employed workers meeting with a firm, which is not a threat to the

current match, is denoted by sx,y ≡
∫ 1

0 sλt
vt(y′)

Vt
11{S(x, y, zt) ≥ 0 > S(x, y′, zt)}dy′. The

first line in (36) takes into account the outflow of workers poached by more productive

firms. The second line considers the inflow of hiring from the pool of unemployed work-
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ers. The third line takes into consideration intra-firm re-bargaining. The flow equation

for the measure at the promotion wage ht(x, y, φ1(x, y, Γ̂t)) solves:

ht+1(x, y, φ1(x, y, Γ̂t)) = ht+(x, y, φ1(x, y, Γ̂t))×
(
1−

∫ 1

0
sλt

vt(y′)
Vt

11{S(x, y′, zt) ≥ S(x, y, zt)}dy′
)

+
∫

w∈Ωt\φ1(x,y,Γ̂t)
11{W(x, y, w, Γ̂t)−U(x, z) > S(x, y, zt)}×

(1− sλt + sx,y)ht+(x, y, w)dw

(37)

The first line in (37) takes into account the outflow of workers poached by more produc-

tive firms. The second and third lines take into consideration the measures of matches in

which the firm had a credible threat to break the match. The expression for ht+1(x, y, φ1(x, y′, Γ̂t))

when y′ 6= y has to take into account workers poached by more productive firms, poach-

ing from less productive firms and wage increases resulting from counter-offers:

ht+1(x, y, φ1(x, y′, Γ̂t)) = ht+(x, y, φ1(x, y′, Γ̂t))×
(
1−

∫ 1

0
sλt

vt(y′′)
Vt

11{S(x, y′′, zt) ≥ S(x, y, zt)}dy′′
)

+
∫ 1

0
sλtht+(x, y′)

vt(y)
Vt

11{S(x, y, zt) ≥ S(x, y′, zt)}dy

+
∫

w∈Ωt\φ1(x,y′,Γ̂t)

∫ 1

0
sλtht+(x, y, w)11{φ1(x, y′, Γ̂t) ≥ w}vt(y′)

Vt
×

11{S(x, y, zt) > S(x, y′, zt) ≥ 0}dy′dw

(38)

For wages that are not in the set of starting or promotion wages denoted by {φ0(x, y, Γ̂t), φ1(x, y, Γ̂t)}(x,y)∈[0,1]2 ,

the flow equation takes into account workers (i) surviving both endogenous and exoge-

nous job destruction (ii) workers with no on-the-job meeting or meeting (or choosing not

to disclose unsuccessful ones) (iii) workers with no intra-firm re-bargaining:

ht+1(x, y, w) = ht+(x, y, w)(1− sλt + sx,y)× 11{0 ≤W(x, y, w, Γ̂t)−U(x, z) < S(x, y, zt)}

(39)
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F Identification

Table 15: Jacobian of f : p→ m
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G Inference

Because the likelihood function is untractable, I use the Simulated Method of Moments

(SMM) to estimate parameter values (see for instance Duffie and Singleton (1990) and

Gourieroux et al. (1993)). The SMM estimates are the one minimizing a weighted differ-

ence of simulated moments from their empirical counterparts:

θ̂SMM = arg min
θ

(
m̂−mS(θ)

)
W
(
m̂−mS(θ)

)′ (40)

where m̂ is a vector of empirical moments and mS(θ) a vector of the same moments,

calculated using simulated data. More specifically, the l element of the vector m̂ is calcu-

lated as ml ≡ 1
T ∑T

t=1 f ∗l,t, where f ∗l;t ≡ fl(Yt, Yt−1, ..., Yt−k+1) with fl a function mapping

the finite l-history of state information {Yt, Yt−1, ..., Yt−k+1} to R. I choose the weighting

matrix W to be diagonal, with values representing subjective weight of the moments I

deem more important to match.

In this paper, my goal is to match unconditional moments from a time series. In

this context, under some regularity conditions14, the SMM estimate is asymptotically

normally distributed with asymptotic variance (1 + τ) times that of the GMM estimator,

where τ = T
S , with T the sample size and S the length of the simulated sample. As the

size of the simulated sample increases relative to the actual sample size, the efficiency loss

due to using simulated data rather than real ones becomes negligible. Note that θ̂SMM is

a function of both τ and the weighting matrix W. The SMM estimator has the following

formula for the asymptotic variance:

√
T
(
θ̂SMM − θ0

) A∼N (0, (1 + τ)Σ−1
1 Σ2Σ−1

1 ) (41)

whith limT→∞
T

S(T) = τ

Σ0 =
+∞

∑
j=−∞

E
(
[ f ∗t −E( f ∗t )][ f ∗t−j −E( f ∗t−j)]

′)

Σ1 = D′WD

Σ2 = D′WΣ0WD
14see Gourieroux et al. (1993), page 31
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D = E0

(∂mS(θ)

∂θ′

)
In practice, I approximate D numerically using a finite difference scheme. To calculate

Σ0, I use a HAC estimator on simulated data rather than on real data. Given that the con-

vergence rate of spectral estimators is low and that I control the length of the simulated

sample, this potentially increases the accuracy of my estimate, as discussed in Duffie and

Singleton (1990). The standard error for the estimate l is then calculated by taking the

square root of the (l, l) element of the estimate for the asymptotic matrix, multiplied by

1
T :

SEl =
( 1

T

(
(1 + τ)Σ−1

1 Σ2Σ−1
1

)
ll

)1/2
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